A Pilot Climate Sensitivity Study Using the CEN Coupled Adjoint Model (CESAM)

D. Stammer Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany

Search for other papers by D. Stammer in
Current site
Google Scholar
PubMed
Close
,
A. Köhl Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany

Search for other papers by A. Köhl in
Current site
Google Scholar
PubMed
Close
,
A. Vlasenko Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany

Search for other papers by A. Vlasenko in
Current site
Google Scholar
PubMed
Close
,
I. Matei Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany

Search for other papers by I. Matei in
Current site
Google Scholar
PubMed
Close
,
F. Lunkeit Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany

Search for other papers by F. Lunkeit in
Current site
Google Scholar
PubMed
Close
, and
S. Schubert Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany

Search for other papers by S. Schubert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A pilot coupled climate sensitivity study is presented based on the newly developed adjoint coupled climate model, Centrum für Erdsystemforschung und Nachhaltigkeit (CEN) Earth System Assimilation Model (CESAM). To this end the components of the coupled forward model are summarized, and the generation of the adjoint code out of the model forward code through the application of the Transformation of Algorithms in FORTRAN (TAF) adjoint compiler is discussed. It is shown that simulations of the intermediate-complexity CESAM are comparable in quality to CMIP-type coupled climate models, justifying the usage of the model to compute adjoint sensitivities of the northern Europe near-surface temperature to anomalies in surface temperature, sea surface salinity, and sea ice over the North Atlantic and the Arctic on time scales of up to one month. Results confirm that on a time scale of up to a few days surface temperatures over northern Europe are influenced by Atlantic temperature anomalies just upstream of the target location. With increasingly longer time lapse, however, it is the influence of SSTs over the central and western North Atlantic on the overlying atmosphere and the associated changes in storm-track pattern that dominate the evolution of the surface European temperature. Influences of surface salinity and sea ice on the northern European temperature appear to have similar sensitivity mechanisms, invoked indirectly through their influence on near-surface temperature anomalies. The adjoint study thus confirms that the SST’s impact on the atmospheric dynamics, notably storm tracks, is the primary cause for the influence of northern European temperature changes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. Stammer, detlef.stammer@uni-hamburg.de

Abstract

A pilot coupled climate sensitivity study is presented based on the newly developed adjoint coupled climate model, Centrum für Erdsystemforschung und Nachhaltigkeit (CEN) Earth System Assimilation Model (CESAM). To this end the components of the coupled forward model are summarized, and the generation of the adjoint code out of the model forward code through the application of the Transformation of Algorithms in FORTRAN (TAF) adjoint compiler is discussed. It is shown that simulations of the intermediate-complexity CESAM are comparable in quality to CMIP-type coupled climate models, justifying the usage of the model to compute adjoint sensitivities of the northern Europe near-surface temperature to anomalies in surface temperature, sea surface salinity, and sea ice over the North Atlantic and the Arctic on time scales of up to one month. Results confirm that on a time scale of up to a few days surface temperatures over northern Europe are influenced by Atlantic temperature anomalies just upstream of the target location. With increasingly longer time lapse, however, it is the influence of SSTs over the central and western North Atlantic on the overlying atmosphere and the associated changes in storm-track pattern that dominate the evolution of the surface European temperature. Influences of surface salinity and sea ice on the northern European temperature appear to have similar sensitivity mechanisms, invoked indirectly through their influence on near-surface temperature anomalies. The adjoint study thus confirms that the SST’s impact on the atmospheric dynamics, notably storm tracks, is the primary cause for the influence of northern European temperature changes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. Stammer, detlef.stammer@uni-hamburg.de
Save
  • Adcroft, A., C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, 2004: Overview of the formulation and numerics of the MITGCM. Proc. ECMWF Seminar Series on Numerical Methods, Recent Developments in Numerical Methods for Atmosphere and Ocean Modelling, Reading, United Kingdom, ECMWF, 139–149, http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf.

  • Agarwal, N., J. H. Jungclaus, A. Köhl, C. R. Mechoso, and D. Stammer, 2015: Additional contributions to CMIP5 regional sea level projections resulting from Greenland and Antarctic ice mass loss. Environ. Res. Lett., 10, 074008, https://doi.org/10.1088/1748-9326/10/7/074008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122137, https://doi.org/10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amerault, C., X. Zou, and J. Doyle, 2008: Tests of an adjoint mesoscale model with explicit moist physics on the cloud scale. Mon. Wea. Rev., 136, 21202132, https://doi.org/10.1175/2007MWR2259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancell, B., and G. J. Hakim, 2007: Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, https://doi.org/10.1175/2007MWR1904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, D., 2010: Early successes: El Niño, Southern Oscillation and seasonal forecasting. Proc. OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, European Space Agency, WPP-306, https://doi.org/10.5270/OceanObs09.pp.01.

    • Crossref
    • Export Citation
  • Barnett, T., R. Malone, W. Pennell, D. Stammer, B. Semtner, and W. Washington, 2004: The effects of climate change on water resources in the west: Introduction and overview. Climatic Change, 62, 111, https://doi.org/10.1023/B:CLIM.0000013695.21726.b8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellucci, A., and Coauthors, 2015: An assessment of a multi-model ensemble of decadal climate predictions. Climate Dyn., 44, 27872806, https://doi.org/10.1007/s00382-014-2164-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., P. Kallberg, S. Kobayashi, D. Dee, S. Uppala, A. J. Simmons, P. Poli, and H. Sato, 2011: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 13811399, https://doi.org/10.1002/qj.864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blessing, S., K. Fraedrich, and F. Lunkeit, 2004: Climate diagnostics by adjoint modelling: A feasibility study. The KIHZ Project: Towards a Synthesis of Holocene Proxy Data and Climate Models, H. Fischer et al., Eds., Springer, 383–396.

    • Crossref
    • Export Citation
  • Blessing, S., and Coauthors, 2014: Testing variational estimation of process parameters and initial conditions of an Earth system model. Tellus, 66A, 22606, https://doi.org/10.3402/tellusa.v66.22606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunzel, F., D. Notz, J. Baehr, W. A. Müller, and K. Fröhlich, 2016: Seasonal climate forecasts significantly affected by observational uncertainty of Arctic sea ice concentration. Geophys. Res. Lett., 43, 852859, https://doi.org/10.1002/2015GL066928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, https://doi.org/10.1017/CBO9781107415324.024.

    • Crossref
    • Export Citation
  • Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon, 2003: Transport and variability of the Antarctic circumpolar current in Drake Passage. J. Geophys. Res., 108, 8084, https://doi.org/10.1029/2001JC001147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. A. Reynolds, C. Amerault, and J. Moskaitis, 2012: Adjoint sensitivity and predictability of tropical cyclogenesis. J. Atmos. Sci., 69, 35353557, https://doi.org/10.1175/JAS-D-12-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drévillon, M., L. Terray, P. Rogel, and C. Cassou, 2001: Mid latitude Atlantic SST influence on European winter climate variability in the NCEP reanalysis. Climate Dyn., 18, 331344, https://doi.org/10.1007/s003820100178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliasen, E., B. Machenhauer, and E. Rasmussen, 1970: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Koebenhavns Universitet Institut for Teoretisk Meteorologi Rep., 74 pp.

  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866, https://doi.org/10.1017/CBO9781107415324.020.

    • Crossref
    • Export Citation
  • Fraedrich, K., E. Kirk, and F. Lunkeit, 1998: PUMA: Portable University Model of the Atmosphere. Deutsches Klimarechenzentrum Tech. Rep. 16, 38 pp.

  • Fraedrich, K., H. Jansen, E. Kirk, U. Luksch, and F. Lunkeit, 2005a: The planet simulator: Towards a user friendly model. Meteor. Z., 14, 299304, https://doi.org/10.1127/0941-2948/2005/0043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., H. Jansen, E. Kirk, and F. Lunkeit, 2005b: The planet simulator: Green planet and desert world. Meteor. Z., 14, 305314, https://doi.org/10.1127/0941-2948/2005/0044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., E. Kirk, U. Luksch, and F. Lunkeit, 2005c: The Portable University Model of the Atmosphere (PUMA): Storm track dynamics and low frequency variability. Meteor. Z., 14, 735745, https://doi.org/10.1127/0941-2948/2005/0074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves and air-sea feedback in the middle latitudes. Rev. Geophys., 23, 357390, https://doi.org/10.1029/RG023i004p00357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujii, Y., and Coauthors, 2009: Coupled climate simulation by constraining ocean fields in a coupled model with ocean data. J. Climate, 22, 55415557, https://doi.org/10.1175/2009JCLI2814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galanti, E., and E. Tziperman, 2003: A midlatitude–ENSO teleconnection mechanism via baroclinically unstable long Rossby waves. J. Phys. Oceanogr., 33, 18771887, https://doi.org/10.1175/1520-0485(2003)033<1877:AMTMVB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., and C. Frankignoul, 2016: On the feedback of the winter NAO-driven sea ice anomalies. Climate Dyn., 47, 16011612, https://doi.org/10.1007/s00382-015-2922-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspar, P., Y. Gregoris, and J.-M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station papa and long-term upper ocean study site. J. Geophys. Res., 95, 16 17916 193, https://doi.org/10.1029/JC095iC09p16179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. ACM Trans. Math. Software, 24, 437474, https://doi.org/10.1145/293686.293695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giering, R., and T. Kaminski, 2003: Applying TAF to generate efficient derivative code of Fortran 77-95 programs. Proc. Appl. Math. Mech., 2, 5457, https://doi.org/10.1002/pamm.200310014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M. C. G., 1986: Application of adjoint sensitivity theory to an atmospheric general circulation model. J. Atmos. Sci., 43, 26442652, https://doi.org/10.1175/1520-0469(1986)043<2644:AOASTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holden, P. B., N. R. Edwards, K. Fraedrich, E. Kirk, F. Lunkeit, and X. Zhu, 2015: PLASIM-GENIE: A new intermediate complexity AOGCM. Geosci. Model Dev., 9, 33473361, https://doi.org/10.5194/gmdd-8-10677-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., and D. L. Williamson, 2011: The pros and cons of diffusion, filters and fixers in atmospheric general circulation models. Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen et al., Eds., Springer, 381–493.

    • Crossref
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2013: Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst., 5, 422446, https://doi.org/10.1002/jame.20023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karspeck, A., S. Yeager, G. Danabasoglu, and H. Teng, 2015: An evaluation of experimental decadal predictions using CCSM4. Climate Dyn., 44, 907923, https://doi.org/10.1007/s00382-014-2212-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, https://doi.org/10.1038/nature06921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhl, A., and D. Stammer, 2004: Optimal observations for variational data assimilation. J. Phys. Oceanogr., 34, 529542, https://doi.org/10.1175/2513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 4063, https://doi.org/10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 12321240, https://doi.org/10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and K. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth’s atmosphere. J. Atmos. Sci., 31, 118133, https://doi.org/10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen, 2016: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., 142, 6578, https://doi.org/10.1002/qj.2629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laursen, L., and E. Eliasen, 1989: On the effect of the damping mechanisms in an atmospheric general circulation model. Tellus, 41A, 385400, https://doi.org/10.1111/j.1600-0870.1989.tb00390.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2016: Impact of in-consistency between the climate model and its initial conditions on climate prediction. Climate Dyn., 49, 10611075, https://doi.org/10.1007/s00382-016-3194-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp.

  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, https://doi.org/10.1007/BF00117978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J. F., M. Tiedke, and J.-F. Geleyn, 1982: A short history of the PBL parameterisation at ECMWF. Proc. ECMWF Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 5980.

  • Lyu, G., A. Köhl, I. Matei, and D. Stammer, 2018: Adjoint-based climate model tuning: Application to the planet simulator. J. Adv. Model. Earth Syst., https://doi.org/10.1002/2017MS001194, in press.

    • Crossref
    • Export Citation
  • Macdonald, A. M., and M. O. Baringer, 2013: Ocean heat transport. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 759–785.

    • Crossref
    • Export Citation
  • Marotzke, J., R. Giering, Q. K. Zhang, D. Stammer, C. N. Hill, and T. Lee, 1999: Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity. J. Geophys. Res., 104, 29 52929 548, https://doi.org/10.1029/1999JC900236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marotzke, J., and Coauthors, 2016: MiKlip: A national research project on decadal climate prediction. Bull. Amer. Meteor. Soc., 97, 23792394, https://doi.org/10.1175/BAMS-D-15-00184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masuda, S., and Coauthors, 2010: Simulated rapid warming of abyssal North Pacific waters. Science, 329, 319322, https://doi.org/10.1126/science.1188703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G., and Coauthors, 2014: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., 95, 243267, https://doi.org/10.1175/BAMS-D-12-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, D. P., P. Laloyaux, K. Haines, and M. A. Balmaseda, 2015: Origin and impact of initialization shocks in coupled atmosphere–ocean forecasts. Mon. Wea. Rev., 143, 46314644, https://doi.org/10.1175/MWR-D-15-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1970: Transform method for calculation of vector coupled sums. J. Atmos. Sci., 27, 890895, https://doi.org/10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pail, R., and Coauthors, 2010: Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett., 37, L20314, https://doi.org/10.1029/2010GL044906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., T. P. Barnett, R. Tokmakian, A. Semtner, M. Maltrud, J. Lysne, and A. Craig, 2004: The ACPI project, Element 1: Initializing a coupled climate model from observed conditions. Climatic Change, 62, 1328, https://doi.org/10.1023/B:CLIM.0000013676.42672.23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., J. H. Jungclaus, A. Köhl, D. Stammer, and J. Marotzke, 2009: Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J. Climate, 22, 39263938, https://doi.org/10.1175/2009JCLI2535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polkova, I., A. Köhl, and D. Stammer, 2014: Impact of different initialization procedures on the predictive skill of an ocean–atmosphere coupled model. Climate Dyn., 42, 31513169, https://doi.org/10.1007/s00382-013-1969-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., K. Arpe, and L. Bengtsson, 1992: Simulation of present day climate with the ECHAM model: Impact of model physics and resolution. Max Planck Institute Tech. Rep. 93, 112 pp.

  • Rosati, A., K. Miyakoda, and R. Gudgel, 1997: The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon. Wea. Rev., 125, 754772, https://doi.org/10.1175/1520-0493(1997)125<0754:TIOOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasamori, T., 1968: The radiative cooling calculation for application to general circulation experiments. J. Appl. Meteor., 7, 721729, https://doi.org/10.1175/1520-0450(1968)007<0721:TRCCFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semtner, A. J. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, A., and J. M. Slingo, 1991: Response of the National Center for Atmospheric Research Community Climate Model to improvements in the representation of clouds. J. Geophys. Res., 96, 15 34115 357, https://doi.org/10.1029/91JD00930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., S. Cusack, A. W. Colman, C. W. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796–799, https://doi.org/10.1126/science.1139540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2003: Volume, heat and freshwater transports of the global ocean circulation 1992–1997, estimated from a general circulation model constrained by WOCE data. J. Geophys. Res., 108, 3007, https://doi.org/10.1029/2001JC001115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., S. Park, A. Köhl, R. Lukas, and F. Santiago-Mandujano, 2008: Causes for large-scale hydrographic changes at the Hawaii ocean time series station. J. Phys. Oceanogr., 38, 19311948, https://doi.org/10.1175/2008JPO3751.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., M. Balmaseda, P. Heimbach, A. Köhl, and A. Weaver, 2016: Ocean data assimilation in support of climate applications: Status and perspectives. Annu. Rev. Mar. Sci., 8, 491518, https://doi.org/10.1146/annurev-marine-122414-034113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci., 35, 21232132, https://doi.org/10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S. Ackermann, and E. A. Smith, 1984: A shortwave parameterization revised to improve cloud absorption. J. Atmos. Sci., 41, 687690, https://doi.org/10.1175/1520-0469(1984)041<0687:ASPRTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiura, N., T. Awaji, S. Masuda, T. Mochizuki, T. Toyoda, T. Miyama, H. Igarashi, and Y. Ishikawa, 2008: Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations. J. Geophys. Res., 113, C10017, https://doi.org/10.1029/2008JC004741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 13111328, https://doi.org/10.1002/qj.49711347812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2008: Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Prog. Oceanogr., 78, 257303, https://doi.org/10.1016/j.pocean.2008.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Utke, J., U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and C. Wunsch, 2008: Open AD/F: A modular, open-source tool for automatic differentiation of Fortran codes. ACM Trans. Math. Software, 34, 18, https://doi.org/10.1145/1377596.1377598.

    • Crossref
    • Export Citation
  • Vlasenko, A. V., A. Köhl, and D. Stammer, 2016: Efficiency of geophysical adjoint codes generated by automatic differentiation tools. Comput. Phys. Commun., 199, 2228, https://doi.org/10.1016/j.cpc.2015.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S., 2001: Ocean transport of freshwater. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler et al., Eds., International Geophysics Series, Vol. 77, Academic Press, 475–488.

    • Crossref
    • Export Citation
  • Wild, M., and Coauthors, 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models. Climate Dyn., 44, 33933429, https://doi.org/10.1007/s00382-014-2430-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 458 pp.

    • Crossref
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2013: Dynamically and kinematically consistent global ocean circulation and ice state estimates. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 553–579.

    • Crossref
    • Export Citation
  • Zhang, J., W. Hibler, M. Steele, and D. Rothrock, 1998: Arctic ice-ocean modeling with and without climate restoring. J. Phys. Oceanogr., 28, 191217, https://doi.org/10.1175/1520-0485(1998)028<0191:AIOMWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic studies. Mon. Wea. Rev., 135, 35413564, https://doi.org/10.1175/MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 977 317 27
PDF Downloads 342 60 5