Unraveling Climatic Wind and Wave Trends in the Red Sea Using Wave Spectra Partitioning

Sabique Langodan Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Sabique Langodan in
Current site
Google Scholar
PubMed
Close
,
Luigi Cavaleri Institute of Marine Sciences, CNR-ISMAR, Venice, Italy

Search for other papers by Luigi Cavaleri in
Current site
Google Scholar
PubMed
Close
,
Angela Pomaro Institute of Marine Sciences, CNR-ISMAR, Venice, Italy

Search for other papers by Angela Pomaro in
Current site
Google Scholar
PubMed
Close
,
Jesus Portilla Department of Mechanical Engineering, Escuela Politécnica Nacional, Quito, Ecuador

Search for other papers by Jesus Portilla in
Current site
Google Scholar
PubMed
Close
,
Yasser Abualnaja Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Yasser Abualnaja in
Current site
Google Scholar
PubMed
Close
, and
Ibrahim Hoteit Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Ibrahim Hoteit in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The wind and wave climatology of the Red Sea is derived from a validated 30-yr high-resolution model simulation. After describing the relevant features of the basin, the main wind and wave systems are identified by using an innovative spectral partition technique to explain their genesis and characteristics. In the northern part of the sea, wind and waves of the same intensity are present throughout the year, while the central and southern zones are characterized by a marked seasonality. The partition technique allows the association of a general decrease in the energy of the different wave systems with a specific weather pattern. The most intense decrease is found in the northern storms, which are associated with meteorological pulses from the Mediterranean Sea.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ibrahim Hoteit, ibrahim.hoteit@kaust.edu

Abstract

The wind and wave climatology of the Red Sea is derived from a validated 30-yr high-resolution model simulation. After describing the relevant features of the basin, the main wind and wave systems are identified by using an innovative spectral partition technique to explain their genesis and characteristics. In the northern part of the sea, wind and waves of the same intensity are present throughout the year, while the central and southern zones are characterized by a marked seasonality. The partition technique allows the association of a general decrease in the energy of the different wave systems with a specific weather pattern. The most intense decrease is found in the northern storms, which are associated with meteorological pulses from the Mediterranean Sea.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ibrahim Hoteit, ibrahim.hoteit@kaust.edu
Save
  • Aarnes, O. J., S. Abdalla, J.-R. Bidlot, and O. Breivik, 2015: Marine wind and wave height trends at different ERA-Interim forecast ranges. J. Climate, 28, 819837, https://doi.org/10.1175/JCLI-D-14-00470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aboobacker, V. M., P. R. Shanas, M. A. Alsaafani, and M. A. Albarakati, 2016: Wave energy resource assessment for Red Sea. Renew. Energy, 114, 4658, https://doi.org/10.1016/j.renene.2016.09.073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Appendini, C. M., A. Torres-Freyermuth, P. Salles, J. López-González, and E. Mendoza, 2014: Wave climate and trends for the Gulf of Mexico: A 30-yr wave hindcast. J. Climate, 27, 16191632, https://doi.org/10.1175/JCLI-D-13-00206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and Coauthors, 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr., 40, 19171941, https://doi.org/10.1175/2010JPO4324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, L. M., A. Ffield, and A. Gordon, 2000: Spreading of Red Sea overflow waters in the Indian Ocean. J. Geophys. Res., 105, 85498564, https://doi.org/10.1029/1999JC900306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caires, S., V. R. Swail, and X. L. Wang, 2006: Projection and analysis of extreme wave climate. J. Climate, 19, 55815605, https://doi.org/10.1175/JCLI3918.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charles, E., D. Idier, J. Thiébot, G. Le Cozannet, R. Pedreros, F. Ardhuin, and S. Planton, 2012: Present wave climate in the Bay of Biscay: Spatiotemporal variability and trends from 1958 to 2001. J. Climate, 25, 20202039, https://doi.org/10.1175/JCLI-D-11-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conte, D., and P. Lionello, 2013: Characteristics of large positive and negative surges in the Mediterranean Sea and their attenuation in future climate scenarios. Global Planet. Change, 111, 159173, https://doi.org/10.1016/j.gloplacha.2013.09.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fery, N., G. Bruss, A. Al-Subhi, and R. Mayerle, 2012: Numerical study of wind-generated waves in the Red Sea. Proc. 4th Int. Conf. on the Application of Physical Modeling to Port and Coastal Protection, Coastlab12, Ghent, Belgium, 446–455.

  • Gulev, S. K., V. Grigorieva, A. Sterl, and D. Woolf, 2003: Assessment of the reliability of wave observations from voluntary observing ships: Insights from the validation of a global wind wave climatology based on voluntary observing ship data. J. Geophys. Res., 108, 3236, https://doi.org/10.1029/2002JC001437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, S., K. Hasselmann, J. H. Allender, and T. P. Barnett, 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear transfer for application in wave models. J. Phys. Oceanogr., 15, 13781391, https://doi.org/10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., 2007: Waves in Oceanic and Coastal Waters. Cambridge University Press, 387 pp.

    • Crossref
    • Export Citation
  • Huang, C. H., and F. Qiao, 2010: Wave-turbulence interaction and its induced mixing in the upper ocean. J. Geophys. Res., 115, C04026, https://doi.org/10.1029/2009JC005853.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 16311642, https://doi.org/10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., J. T. Farrar, R. C. Beardsley, R. Chen, and C. Chen, 2009: Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea. Geophys. Res. Lett., 36, L19605, https://doi.org/10.1029/2009GL040008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. 4th ed. Charles Griffin, 160 pp.

  • Kushnir, Y., V. J. Cardone, J. G. Greenwood, and M. A. Cane, 1997: The recent increase in North Atlantic wave heights. J. Climate, 10, 21072113, https://doi.org/10.1175/1520-0442(1997)010<2107:TRIINA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langodan, S., L. Cavaleri, Y. Viswanadhapalli, and I. Hoteit, 2014: The Red Sea: A natural laboratory for wind and wave modeling. J. Phys. Oceanogr., 44, 31393159, https://doi.org/10.1175/JPO-D-13-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langodan, S., L. Cavaleri, Y. Viswanadhapalli, and I. Hoteit, 2015: Wind wave source functions in opposing seas. J. Geophys. Res. Oceans, 120, 67516768, https://doi.org/10.1002/2015JC010816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langodan, S., Y. Viswanadhapalli, H. P. Dasari, O. Knio, and I. Hoteit, 2016: A high resolution assessment of wind and wave energy potentials in the Red Sea. Appl. Energy, 181, 244255, https://doi.org/10.1016/j.apenergy.2016.08.076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., A. V. Babanin, S. Zieger, I. R. Young, and C. Guan, 2016: Wind and wave climate in the Arctic Ocean as observed by altimeters. J. Climate, 29, 79577975, https://doi.org/10.1175/JCLI-D-16-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Metwally, A., and A. G. Abul-Azm, 2007: The Red Sea wind-wave ATLAS. Proc. 17th Int. Offshore and Polar Engineering Conf., Lisbon, Portugal, International Society of Offshore and Polar Engineers, 18501854.

  • Pedgley, D. E., 1974: An outline of the weather and climate of the Red Sea. L’Oceanographie Physique de la Mer Rouge: Symp. de l’Association International des Sciences Physiques de l’Océan, Paris, France, UNESCO, 9–27.

  • Pomaro, A., L. Cavaleri, and P. Lionello, 2017: Climatology and trends of the Adriatic Sea wind waves: Analysis of a 37-year long instrumental data set. Int. J. Climatol., 37, 42374250, https://doi.org/10.1002/joc.5066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portilla, J., L. Cavaleri, and G. P. van Vledder, 2015: Wave spectra partitioning and long term statistical distribution. Ocean Modell., 96, 148160, https://doi.org/10.1016/j.ocemod.2015.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralston, D. K., H. Jiang, and T. F. Ferrar, 2013: Waves in Red Sea: Response to monsoonal and mountain gap winds. Cont. Shelf Res., 65, 113, https://doi.org/10.1016/j.csr.2013.05.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semedo, A., S. K. Rutgersson, and A. Sterl, 2011: A global view on the wind sea and swell climate and variability from ERA-40. J. Climate, 24, 14611479, https://doi.org/10.1175/2010JCLI3718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semedo, A., R. Vettor, Ø. Breivik, A. Sterl, M. Reistad, C. G. Soares, and D. Lima, 2015: The wind sea and swell waves climate in the Nordic seas. Ocean Dyn., 65, 223240, https://doi.org/10.1007/s10236-014-0788-4/

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimate of the regression coefficients based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.2307/2285891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Snodgrass, F. E., G. W. Groves, K. F. Hasselmann, G. R. Miller, W. H. Munk, and W. M. Powers, 1966: Propagation of swell across the Pacific. Philos. Trans. Roy. Soc. London, 259A, 431497, https://doi.org/10.1098/rsta.1966.0022.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2014: User manual and system documentation of WAVEWATCH-III version 4.18. NOAA/NWS/NCEP/OMB Tech. Note 316, 311 pp.

  • Tuomi, L., K. Kahma, and H. Pettersson, 2011: Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ. Res., 16, 451472.

    • Search Google Scholar
    • Export Citation
  • Vinoth, J., and I. R. Young, 2011: Global estimates of extreme wind speed and wave height. J. Climate, 24, 16471665, https://doi.org/10.1175/2010JCLI3680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., and V. R. Swail, 2001: Changes in extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J. Climate, 14, 22042221, https://doi.org/10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., A. Rutgersson, and E. Sahlée, 2015: Upper-ocean mixing due to surface gravity waves. J. Geophys. Res. Oceans, 120, 82108228, https://doi.org/10.1002/2015JC011329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, F., I. Hoteit, L. J. Pratt, A. S. Bower, A. Köhl, G. Gopalakrishnan, and D. Rivas, 2014: Seasonal overturning circulation in the Red Sea: 2. Winter circulation. J. Geophys. Res. Oceans, 119, 22632289, https://doi.org/10.1002/2013JC009331.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1828 438 50
PDF Downloads 1363 298 27