A New Daily Observational Record from Grytviken, South Georgia: Exploring Twentieth-Century Extremes in the South Atlantic

Zoë Thomas Palaeontology, Geobiology and Earth Archives Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
Climate Change Research Centre, School of Biological, Earth And Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Zoë Thomas in
Current site
Google Scholar
PubMed
Close
,
Chris Turney Palaeontology, Geobiology and Earth Archives Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
Climate Change Research Centre, School of Biological, Earth And Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Chris Turney in
Current site
Google Scholar
PubMed
Close
,
Rob Allan Met Office Hadley Centre/ACRE, Exeter, United Kingdom

Search for other papers by Rob Allan in
Current site
Google Scholar
PubMed
Close
,
Steve Colwell British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Steve Colwell in
Current site
Google Scholar
PubMed
Close
,
Gail Kelly Met Office Hadley Centre/ACRE, Exeter, United Kingdom

Search for other papers by Gail Kelly in
Current site
Google Scholar
PubMed
Close
,
David Lister Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Search for other papers by David Lister in
Current site
Google Scholar
PubMed
Close
,
Philip Jones Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by Philip Jones in
Current site
Google Scholar
PubMed
Close
,
Mark Beswick National Meteorological Library and Archive, Met Office, Exeter, United Kingdom

Search for other papers by Mark Beswick in
Current site
Google Scholar
PubMed
Close
,
Lisa Alexander Climate Change Research Centre, School of Biological, Earth And Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Lisa Alexander in
Current site
Google Scholar
PubMed
Close
,
Tanya Lippmann Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands

Search for other papers by Tanya Lippmann in
Current site
Google Scholar
PubMed
Close
,
Nicholas Herold Climate Change Research Centre, School of Biological, Earth And Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Nicholas Herold in
Current site
Google Scholar
PubMed
Close
, and
Richard Jones Department of Geography, Exeter University, Devon, United Kingdom

Search for other papers by Richard Jones in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The sparse nature of observational records across the mid- to high latitudes of the Southern Hemisphere limits the ability to place late-twentieth-century environmental changes in the context of long-term (multidecadal and centennial) variability. Historical records from subantarctic islands offer considerable potential for developing highly resolved records of change. In 1905, a whaling and meteorological station was established at Grytviken on subantarctic South Georgia in the South Atlantic (54°S, 36°W), providing near-continuous daily observations through to present day. This paper reports a new, daily observational record of temperature and precipitation from Grytviken, which is compared to regional datasets and historical reanalysis. The authors find a shift toward increasingly warmer daytime extremes commencing from the mid-twentieth century and accompanied by warmer nighttime temperatures, with an average rate of temperature rise of 0.13°C decade−1 over the period 1907–2016 (p < 0.0001). Analysis of these data and reanalysis products suggest a change of pervasive synoptic conditions across the mid- to high latitudes since the mid-twentieth century, characterized by stronger westerly airflow and associated warm föhn winds across South Georgia. This rapid rate of warming and associated declining habitat suitability has important negative implications for biodiversity, including the survival of key marine biota in the region.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zoë Thomas, z.thomas@unsw.edu.au

Abstract

The sparse nature of observational records across the mid- to high latitudes of the Southern Hemisphere limits the ability to place late-twentieth-century environmental changes in the context of long-term (multidecadal and centennial) variability. Historical records from subantarctic islands offer considerable potential for developing highly resolved records of change. In 1905, a whaling and meteorological station was established at Grytviken on subantarctic South Georgia in the South Atlantic (54°S, 36°W), providing near-continuous daily observations through to present day. This paper reports a new, daily observational record of temperature and precipitation from Grytviken, which is compared to regional datasets and historical reanalysis. The authors find a shift toward increasingly warmer daytime extremes commencing from the mid-twentieth century and accompanied by warmer nighttime temperatures, with an average rate of temperature rise of 0.13°C decade−1 over the period 1907–2016 (p < 0.0001). Analysis of these data and reanalysis products suggest a change of pervasive synoptic conditions across the mid- to high latitudes since the mid-twentieth century, characterized by stronger westerly airflow and associated warm föhn winds across South Georgia. This rapid rate of warming and associated declining habitat suitability has important negative implications for biodiversity, including the survival of key marine biota in the region.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zoë Thomas, z.thomas@unsw.edu.au
Save
  • Abram, N. J., R. Mulvaney, F. Vimeux, S. J. Phipps, J. Turner, and M. H. England, 2014: Evolution of the southern annular mode during the past millennium. Nat. Climate Change, 4, 564569, https://doi.org/10.1038/nclimate2235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and N. Herold, 2015: ClimPACTv2 indices and software. WMO, https://github.com/ARCCSS-extremes/climpact2.

  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Amesbury, M. J., T. P. Roland, J. Royles, D. A. Hodgson, P. Convey, H. Griffiths, and D. J. Charman, 2017: Widespread biological response to rapid warming on the Antarctic Peninsula. Curr. Biol., 27, 16161622, https://doi.org/10.1016/j.cub.2017.04.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, R., S. Ali, L. I. Bradtmiller, S. H. H. Nielsen, M. Q. Fleisher, B. E. Anderson, and L. H. Burckle, 2009: Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science, 323, 14431448, https://doi.org/10.1126/science.1167441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannister, D., and J. King, 2015: Föhn winds on South Georgia and their impact on regional climate. Weather, 70, 324329, https://doi.org/10.1002/wea.2548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyd, P. W., S. T. Lennartz, D. M. Glover, and S. C. Doney, 2015: Biological ramifications of climate-change-mediated oceanic multi-stressors. Nat. Climate Change, 5, 7179, https://doi.org/10.1038/nclimate2441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Constable, A. J., and Coauthors, 2014: Climate change and Southern Ocean ecosystems I: How changes in physical habitats directly affect marine biota. Global Change Biol., 20, 30043025, https://doi.org/10.1111/gcb.12623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, A. J., S. Poncet, A. P. R. Cooper, D. J. Herbert, and D. Christie, 2010: Glacier retreat on South Georgia and implications for the spread of rats. Antarct. Sci., 22, 255263, https://doi.org/10.1017/S0954102010000064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 63306348, https://doi.org/10.1175/JCLI-D-11-00523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elvidge, A. D., and I. A. Renfrew, 2016: The causes of foehn warming in the lee of mountains. Bull. Amer. Meteor. Soc., 97, 455466, https://doi.org/10.1175/BAMS-D-14-00194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., D. H. Bromwich, and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 15551576, https://doi.org/10.1007/s00382-010-0905-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., A. J. Wovrosh, R. A. Langen, and I. Simmonds, 2012: The characteristic variability and connection to the underlying synoptic activity of the Amundsen-Bellingshausen Seas Low. J. Geophys. Res., 117, D07111, https://doi.org/10.1029/2011JD017337.

    • Search Google Scholar
    • Export Citation
  • Førland, E. J., and I. Hanssen-Bauer, 2000: Increased precipitation in the Norwegian Arctic: True or false? Climatic Change, 46, 485509, https://doi.org/10.1023/A:1005613304674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Førland, E. J., and I. Hanssen-Bauer, 2001: Changes in temperature and precipitation in the Norwegian Arctic during the 20th century. Detecting and Modelling Regional Climate Change, M. B. India and D. L. Bonillo, Eds., Springer, 153–161, https://doi.org/10.1007/978-3-662-04313-4_14.

    • Crossref
    • Export Citation
  • Giese, B. S., H. F. Seidel, G. P. Compo, and P. D. Sardeshmukh, 2016: An ensemble of ocean reanalyses for 1815–2013 with sparse observational input. J. Geophys. Res. Oceans, 121, 68916910, https://doi.org/10.1002/2016JC012079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., P. Y. T. Louie, and D. Yang, 1998: WMO solid precipitation measurement intercomparison. Instruments and Observing Methods Rep. 67, WMO/TD-872, 212 pp., https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-67-solid-precip/WMOtd872.pdf.

  • Gordon, J. E., V. M. Haynes, and A. Hubbard, 2008: Recent glacier changes and climate trends on South Georgia. Global Planet. Change, 60, 7284, https://doi.org/10.1016/j.gloplacha.2006.07.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanssen-Bauer, I., 2002: Temperature and precipitation in Svalbard 1912–2050: Measurements and scenarios. Polar Rec., 38, 225232, https://doi.org/10.1017/S0032247400017757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, O. T., D. K. A. Barnes, and H. J. Griffiths, 2011: Highly diverse, poorly studied and uniquely threatened by climate change: An assessment of marine biodiversity on South Georgia’s continental shelf. PLoS One, 6, e19795, https://doi.org/10.1371/journal.pone.0019795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosking, J. S., A. Orr, G. J. Marshall, J. Turner, and T. Phillips, 2013: The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 26, 66336648, https://doi.org/10.1175/JCLI-D-12-00813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. C. B. Field et al., Eds., Cambridge University Press, 582 pp., https://www.ipcc.ch/pdf/special-reports/srex/SREX_Full_Report.pdf.

  • Jones, J. M., R. L. Fogt, M. Widmann, G. J. Marshall, P. D. Jones, and M. Visbeck, 2009: Historical SAM variability. Part I: Century-length seasonal reconstructions. J. Climate, 22, 53195345, https://doi.org/10.1175/2009JCLI2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. M., and Coauthors, 2016: Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Climate Change, 6, 917926, https://doi.org/10.1038/nclimate3103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., C. Harpham, and D. Lister, 2016: Long-term trends in gale days and storminess for the Falkland Islands. Int. J. Climatol., 36, 14131427, https://doi.org/10.1002/joc.4434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landschützer, P., and Coauthors, 2015: The reinvigoration of the Southern Ocean carbon sink. Science, 349, 1221–1224, https://doi.org/10.1126/science.aab2620.

    • Crossref
    • Export Citation
  • Le Quéré, C., M. R. Raupach, J. G. Canadell, and G. Marland, 2009: Trends in the sources and sinks of carbon dioxide. Nat. Geosci., 2, 831836, https://doi.org/10.1038/ngeo689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lister, D. H., and P. D. Jones, 2014: Long-term temperature and precipitation records from the Falkland Islands. Int. J. Climatol., 35, 1224–1231, https://doi.org/10.1002/joc.4049.

    • Crossref
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A. R., and M. G. Richardson, 2017: Rodent eradication scaled up: Clearing rats and mice from South Georgia. Oryx, https://doi.org/10.1017/S003060531700028X.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596, https://doi.org/10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, E. J., and Coauthors, 2007: Climatically driven fluctuations in Southern Ocean ecosystems. Proc. Roy. Soc. London, 274B, 30573067, https://doi.org/10.1098/rspb.2007.1180.

    • Search Google Scholar
    • Export Citation
  • Richard, Y., and Coauthors, 2013: Temperature changes in the mid- and high- latitudes of the Southern Hemisphere. Int. J. Climatol., 33, 19481963, https://doi.org/10.1002/joc.3563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., R. J. Matear, S. R. Rintoul, and A. Lenton, 2012: Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci., 5, 579584, https://doi.org/10.1038/ngeo1523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2015: Need for caution in interpreting extreme weather statistics. J. Climate, 28, 91669187, https://doi.org/10.1175/JCLI-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skansi, M., and Coauthors, 2017: Evaluating highest temperature extremes in the Antarctic. Eos, Trans. Amer. Geophys. Union, 98, https://doi.org/10.1029/2017EO068325.

    • Search Google Scholar
    • Export Citation
  • Thomas, E. R., G. J. Marshall, and J. R. McConnell, 2008: A doubling in snow accumulation in the western Antarctic Peninsula since 1850. Geophys. Res. Lett., 35, L01706, https://doi.org/10.1029/2007GL032529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, E. R., P. F. Dennis, T. J. Bracegirdle, and C. Franzke, 2009: Ice core evidence for significant 100-year regional warming on the Antarctic Peninsula. Geophys. Res. Lett., 36, L20704, https://doi.org/10.1029/2009GL040104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, Z. A., 2016: Using natural archives to detect climate and environmental tipping points in the Earth system. Quat. Sci. Rev., 152, 6071, https://doi.org/10.1016/j.quascirev.2016.09.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1087440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741–749, https://doi.org/10.1038/ngeo1296.

    • Crossref
    • Export Citation
  • Trathan, P. N., J. Forcada, and E. J. Murphy, 2012: Environmental forcing and Southern Ocean marine predator populations: Effects of climate change and variability. Antarctic Ecosystems: An Extreme Environment in a Changing World, A. D. Rogers et al., Eds., John Wiley & Sons, 335–353.

    • Crossref
    • Export Citation
  • Turner, J., and Coauthors, 2005: Antarctic climate change during the last 50 years. Int. J. Climatol., 25, 279294, https://doi.org/10.1002/joc.1130.

  • Turney, C. S. M., and Coauthors, 2016a: Intensification of Southern Hemisphere westerly winds 2000–1000 years ago: Evidence from the subantarctic Campbell and Auckland Islands (52–50°S). J. Quat. Sci., 31, 12–19, https://doi.org/10.1002/jqs.2828.

    • Crossref
    • Export Citation
  • Turney, C. S. M., and Coauthors, 2016b: Multidecadal variations in Southern Hemisphere atmospheric 14C: Evidence against a Southern Ocean sink at the end of the Little Ice Age CO2 anomaly. Global Biogeochem. Cycles, 30, 211218, https://doi.org/10.1002/2015GB005257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turney, C. S. M., and Coauthors, 2016c: Anomalous mid-twentieth century atmospheric circulation change over the South Atlantic compared to the last 6000 years. Environ. Res. Lett., 11, 064009, https://doi.org/10.1088/1748-9326/11/6/064009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turney, C. S. M., and Coauthors, 2017: Tropical forcing of increased Southern Ocean climate variability revealed by a 140-year subantarctic temperature reconstruction. Climate Past, 13, 231248, https://doi.org/10.5194/cp-13-231-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., and G. Burgers, 2005: Searching for decadal variations in ENSO precipitation teleconnections. Geophys. Res. Lett., 32, L15701, https://doi.org/10.1029/2005GL023110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visbeck, M., 2009: A station-based southern annular mode index from 1884 to 2005. J. Climate, 22, 940950, https://doi.org/10.1175/2008JCLI2260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2008a: Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. J. Appl. Meteor. Climatol., 47, 24232444, https://doi.org/10.1175/2008JAMC1741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2008b: Penalized maximal F test for detecting undocumented mean shift without trend change. J. Atmos. Oceanic Technol., 25, 368384, https://doi.org/10.1175/2007JTECHA982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., and Y. Feng, 2013: RHtestsV4 user manual. ETCCDI Tech Rep., 29 pp., http://etccdi.pacificclimate.org/RHtest/RHtestsV4_UserManual_20July2013.pdf.

  • Whitehouse, M. J., M. P. Meredith, P. Rothery, A. Atkinson, P. Ward, and R. E. Korb, 2008: Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th century: Forcings, characteristics and implications for lower trophic levels. Deep Sea Res. I, 55, 12181228, https://doi.org/10.1016/j.dsr.2008.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zazulie, N., M. Rusticucci, and S. Solomon, 2010: Changes in climate at high southern latitudes: A unique daily record at Orcadas spanning 1903–2008. J. Climate, 23, 189196, https://doi.org/10.1175/2009JCLI3074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, https://doi.org/10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1145 516 26
PDF Downloads 469 138 17