Origins of Coupled Model Biases in the Arabian Sea Climatological State

Motoki Nagura Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Motoki Nagura in
Current site
Google Scholar
PubMed
Close
,
J. P. McCreary International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by J. P. McCreary in
Current site
Google Scholar
PubMed
Close
, and
H. Annamalai International Pacific Research Center, and Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by H. Annamalai in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates biases of the climatological mean state of the northern Arabian Sea (NAS) in 31 coupled ocean–atmosphere models. The focus is to understand the cause of the large biases in the depth of the 20°C isotherm that occur in many of them. Other prominent biases are the depth and temperature of Persian Gulf water (PGW) and the wintertime mixed-layer thickness (MLT) along the northern boundary.

For models that lack a Persian Gulf (group 1), is determined by the wintertime MLT bias through the formation of an Arabian Sea high-salinity water mass (ASHSW) that is too deep. For models with a Persian Gulf (group 2), if > MLT (group 2B), PGW remains mostly trapped to the western boundary and, again, directly controls . If MLT (group 2A), PGW spreads into the NAS and impacts because > 20°C; nevertheless still influences indirectly through its impact on .

The thick wintertime mixed layer is driven primarily by surface cooling during the fall. Nevertheless, variations in ΔMLT among the models are more strongly linked to biases in the density stratification (jump) across the bottom of the mixed layer than to biases. The jump is in turn determined primarily by sea surface salinity biases (ΔSSS) advected into the NAS by the West India Coastal Current, and the source of ΔSSS is the rainfall deficit associated with the models’ weak summer monsoon. Ultimately, then, ΔD20 is linked to this deficit.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Corresponding author: Motoki Nagura, nagura@jamstec.go.jp

Abstract

This study investigates biases of the climatological mean state of the northern Arabian Sea (NAS) in 31 coupled ocean–atmosphere models. The focus is to understand the cause of the large biases in the depth of the 20°C isotherm that occur in many of them. Other prominent biases are the depth and temperature of Persian Gulf water (PGW) and the wintertime mixed-layer thickness (MLT) along the northern boundary.

For models that lack a Persian Gulf (group 1), is determined by the wintertime MLT bias through the formation of an Arabian Sea high-salinity water mass (ASHSW) that is too deep. For models with a Persian Gulf (group 2), if > MLT (group 2B), PGW remains mostly trapped to the western boundary and, again, directly controls . If MLT (group 2A), PGW spreads into the NAS and impacts because > 20°C; nevertheless still influences indirectly through its impact on .

The thick wintertime mixed layer is driven primarily by surface cooling during the fall. Nevertheless, variations in ΔMLT among the models are more strongly linked to biases in the density stratification (jump) across the bottom of the mixed layer than to biases. The jump is in turn determined primarily by sea surface salinity biases (ΔSSS) advected into the NAS by the West India Coastal Current, and the source of ΔSSS is the rainfall deficit associated with the models’ weak summer monsoon. Ultimately, then, ΔD20 is linked to this deficit.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Corresponding author: Motoki Nagura, nagura@jamstec.go.jp
Save
  • Anderson, D. L. T., and A. E. Gill, 1975: Spin-up of a stratified ocean, with applications to upwelling. Deep-Sea Res., 22, 583596, https://doi.org/10.1016/0011-7471(75)90046-7.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., B. Taguchi, J. P. McCreary, M. Nagura, and T. Miyama, 2017: Systematic errors in South Asian monsoon simulation: Importance of equatorial Indian Ocean processes. J. Climate, 30, 81598178, https://doi.org/10.1175/JCLI-D-16-0573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23, 13631388, https://doi.org/10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., A. Parekh, G. Srinivas, C. Gnanaseelan, T. S. Fousiya, R. Khandekar, and M. K. Roxy, 2016: Processes associated with the tropical Indian Ocean subsurface temperature bias in a coupled model. J. Phys. Oceanogr., 46, 28632875, https://doi.org/10.1175/JPO-D-15-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. J. Climate, 19, 23472365, https://doi.org/10.1175/JCLI3739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., 1987: On the wind-driven circulation of the South Pacific Ocean. J. Phys. Oceanogr., 17, 613630, https://doi.org/10.1175/1520-0485(1987)017<0613:OTWDCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fathrio, I., S. Iizuka, A. Manda, Y.-M. Kodama, S. Ishida, Q. Moteki, H. Yamada, and Y. Tachibana, 2017: Assessment of western Indian Ocean SST bias of CMIP5 models. J. Geophys. Res. Oceans, 122, 31233140, https://doi.org/10.1002/2016JC012443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2004: Cross-land mixing. A technical guide to MOM4, GFDL Ocean Group Tech. Rep. 5, 177–188.

  • Han, W., J. P. McCreary, and K. E. Kohler, 2001: Influence of precipitation minus evaporation and Bay of Bengal rivers on dynamics, thermodynamics, and mixed layer physics in the upper Indian Ocean. J. Geophys. Res., 106, 68956916, https://doi.org/10.1029/2000JC000403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Z.-Y., T.-J. Zhou, and L.-W. Zou, 2012: Indian Ocean SST biases in a Flexible Regional Ocean Atmosphere Land System (FROALS) model. Atmos. Oceanic Sci. Lett., 5, 273279, https://doi.org/10.1080/16742834.2012.11447012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, M., and A. Leetmaa, 1997: Impact of data assimilation on ocean initialization and El Niño prediction. Mon. Wea. Rev., 125, 742753, https://doi.org/10.1175/1520-0493(1997)125<0742:IODAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kämpf, J., and M. Sadrinasab, 2006: The circulation of the Persian Gulf: A numerical study. Ocean Sci., 2, 2741, https://doi.org/10.5194/os-2-27-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus, 19 (1), 98106, https://doi.org/10.3402/tellusa.v19i1.9753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. P., and T. G. Prasad, 1999: Formation and spreading of Arabian Sea high-salinity water mass. J. Geophys. Res., 104, 14551464, https://doi.org/10.1029/1998JC900022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, R. C., A. G. Turner, D. Marathayil, and G. M. Martin, 2013: The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall. Climate Dyn., 41, 155172, https://doi.org/10.1007/s00382-012-1656-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Hégaret, P., L. Lacour, X. Carton, G. Roullet, R. Baraille, and S. Corréard, 2013: A seasonal dipolar eddy near Ras Al Hamra (Sea of Oman). Ocean Dyn., 63, 633659, https://doi.org/10.1007/s10236-013-0616-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Hégaret, P., R. Duarte, X. Carton, C. Vic, D. Ciani, R. Baraille, and S. Corréard, 2015: Mesoscale variability in the Arabian Sea from HYCOM model results and observations: Impact on the Persian Gulf water path. Ocean Sci., 11, 667693, https://doi.org/10.5194/os-11-667-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Hégaret, P., X. Carton, S. Louazel, and G. Boutin, 2016: Mesoscale eddies and submesoscale structures of Persian Gulf water off the Omani coast in spring 2011. Ocean Sci., 12, 687701, https://doi.org/10.5194/os-12-687-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp., https://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

  • Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 21782190, https://doi.org/10.1175/JCLI4132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2014: On the correspondence between mean forecast errors and climate errors in CMIP5 models. J. Climate, 27, 17811798, https://doi.org/10.1175/JCLI-D-13-00474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., and Coauthors, 2008: NEMO ocean engine. Note du Pôle de modélisation 1288-1619, Rep. 27, Institut Pierre-Simon Laplace, France, 209 pp.

  • Marathayil, D., A. G. Turner, L. C. Shaffrey, and R. C. Levine, 2013: Systematic winter sea-surface temperature biases in the northern Arabian Sea in HiGEM and the CMIP3 models. Environ. Res. Lett., 8, 014028, https://doi.org/10.1088/1748-9326/8/1/014028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., S. F. Milton, C. A. Senior, M. E. Brooks, S. Ineson, T. Reichler, and J. Kim, 2010: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Climate, 23, 59335957, https://doi.org/10.1175/2010JCLI3541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981a: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. Roy. Soc. London, 298A, 603635, https://doi.org/10.1098/rsta.1981.0002.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981b: A linear stratified ocean model of the coastal undercurrent. Philos. Trans. Roy. Soc. London, 302A, 385413, https://doi.org/10.1098/rsta.1981.0176.

    • Search Google Scholar
    • Export Citation
  • Morrison, J. M., 1997: Inter-monsoonal changes in the T-S properties of the near-surface waters of the northern Arabian Sea. Geophys. Res. Lett., 24, 25532556, https://doi.org/10.1029/97GL01876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., W. Sasaki, T. Tozuka, J.-J. Luo, S. K. Behera, and T. Yamagata, 2013: Longitudinal biases in the Seychelles Dome simulated by 35 ocean–atmosphere coupled general circulation models. J. Geophys. Res. Oceans, 118, 831846, https://doi.org/10.1029/2012JC008352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models of the upper ocean. Modeling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon Press, 143–172.

  • Noh, Y., and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104, 15 62115 634, https://doi.org/10.1029/1999JC900068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., Y. J. Kang, T. Matsuura, and S. Iizuka, 2005: Effect of the Prandtl number in the parameterization of vertical mixing in an OGCM of the tropical Pacific. Geophys. Res. Lett., 32, L23609, https://doi.org/10.1029/2005GL024540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oberhuber, J. M., 1993: Simulation of the Atlantic circulation with a coupled sea ice–mixed layer–isopycnal general circulation model. Part I: Model description. J. Phys. Oceanogr., 23, 808829, https://doi.org/10.1175/1520-0485(1993)023<0808:SOTACW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 14431451, https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1996a: Sverdrup theory. Ocean Circulation Theory, J. Pedlosky, Ed., Springer, 11–14.

    • Crossref
    • Export Citation
  • Pedlosky, J., 1996b: Theory of the ventilated thermocline. Ocean Circulation Theory, J. Pedlosky, Ed., Springer, 171–276.

    • Crossref
    • Export Citation
  • Prasad, T. G., and M. Ikeda, 2002a: The wintertime water mass formation in the northern Arabian Sea: A model study. J. Phys. Oceanogr., 32, 10281040, https://doi.org/10.1175/1520-0485(2002)032<1028:TWWMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prasad, T. G., and M. Ikeda, 2002b: A numerical study of the seasonal variability of Arabian Sea high-salinity water. J. Geophys. Res., 107, 3197, https://doi.org/10.1029/2001JC001139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prasad, T. G., M. Ikeda, and S. P. Kumar, 2001: Seasonal spreading of the Persian Gulf water mass in the Arabian Sea. J. Geophys. Res., 106, 17 05917 071, https://doi.org/10.1029/2000JC000480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Premchand, K., J. S. Sastry, and C. S. Murty, 1986: Watermass structure in the western Indian Ocean—Part II: The spreading and transformation of the Persian Gulf water. Mausam, 37, 179186.

    • Search Google Scholar
    • Export Citation
  • Rao, R. R., and R. Sivakumar, 2003: Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J. Geophys. Res., 108, 3009, https://doi.org/10.1029/2001JC000907.

    • Search Google Scholar
    • Export Citation
  • Rochford, D. J., 1964: Salinity maxima in the upper 1000 metres of the north Indian Ocean. Aust. J. Mar. Freshwater Res., 15, 124, https://doi.org/10.1071/MF9640001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandeep, S., and R. S. Ajayamohan, 2014: Origin of cold bias over the Arabian Sea in climate models. Sci. Rep., 4, 6403, https://doi.org/10.1038/srep06403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sayantani, O., C. Gnanaseelan, J. S. Chowdary, A. Parekh, and S. Rahul, 2016: Arabian Sea SST evolution during spring to summer transition period and the associated processes in coupled climate models. Int. J. Climatol., 36, 25412554, https://doi.org/10.1002/joc.4511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, https://doi.org/10.1016/S0079-6611(01)00083-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., S.-P. Xie, R. Murtugudde, M. Jochum, and A. J. Miller, 2009: Seasonal effects of Indian Ocean freshwater forcing in a regional coupled model. J. Climate, 22, 65776596, https://doi.org/10.1175/2009JCLI2990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shankar, D., R. Remya, P. N. Vinayachandran, A. Chatterjee, and A. Behera, 2016: Inhibition of mixed-layer deepening during winter in the northeastern Arabian Sea by the West India Coastal Current. Climate Dyn., 47, 10491072, https://doi.org/10.1007/s00382-015-2888-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shenoi, S. S. C., S. R. Shetye, A. D. Gouveia, and G. S. Michael, 1993: Salinity extrema in the Arabian Sea. Monsoon Biogeochemistry, V. Ittekkot and R. R. Nair, Eds., Geologisch-Paläontologischen Institutes der Universität Hamburg, 37–49.

  • Shetye, S. R., A. D. Gouveia, and S. S. C. Shenoi, 1994: Does winter cooling lead to the subsurface salinity minimum off Saurashtra, India? Oceanography of the Indian Ocean, B. N. Desai, Ed., A. A. Balkema, 617–625.

  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, https://doi.org/10.1007/s00382-012-1607-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76, 30513055, https://doi.org/10.1073/pnas.76.7.3051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326, https://doi.org/10.1073/pnas.33.11.318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1985: Ventilation of the subtropical North Pacific: The shallow salinity minimum. J. Phys. Oceanogr., 15, 633649, https://doi.org/10.1175/1520-0485(1985)015<0633:VOTSNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomczak, M., and J. S. Godfrey, 1994: Regional Oceanography: An Introduction. Elsevier, 422 pp.

  • Toyoda, T., and Coauthors, 2017: Intercomparison and validation of the mixed layer depth fields of global ocean syntheses. Climate Dyn., 49, 753773, https://doi.org/10.1007/s00382-015-2637-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vic, C., G. Roullet, X. Capet, X. Carton, M. J. Molemaker, and J. Gula, 2015: Eddy–topography interactions and the fate of the Persian Gulf outflow. J. Geophys. Res. Oceans, 120, 67006717, https://doi.org/10.1002/2015JC011033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, F., 2008: Water mass formation and circulation in the Persian Gulf and water exchange with the Indian Ocean. Ph.D. dissertation, University of Miami, 144 pp.

  • Yao, F., and W. E. Johns, 2010: A HYCOM modeling study of the Persian Gulf: 1. Model configurations and surface circulation. J. Geophys. Res., 115, C11017, https://doi.org/10.1029/2009JC005781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-Sea Fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institute OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp., https://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 690 186 20
PDF Downloads 272 59 5