Greenland Ice Sheet Surface Melt and Its Relation to Daily Atmospheric Conditions

Richard I. Cullather Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, and Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Richard I. Cullather in
Current site
Google Scholar
PubMed
Close
and
Sophie M. J. Nowicki Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Sophie M. J. Nowicki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Melt area is one of the most reliably monitored variables associated with surface conditions over the full Greenland Ice Sheet (GrIS). Surface melt is also an important indicator of surface mass balance and has potential relevance to the ice sheet’s global sea level contribution. Melt events are known to be spatially heterogeneous and have varying time scales. To understand the forcing mechanisms, it is necessary to examine the relation between the existing conditions and melt area on the time scales that melt is observed. Here, the authors conduct a regression analysis of atmospheric reanalysis variables including sea level pressure, near-surface winds, and components of the surface energy budget with surface melt. The regression analysis finds spatial heterogeneity in the associated atmospheric circulation conditions. For basins in the southern GrIS, there is an association between melt area and high pressure located south of the Denmark Strait, which allows for southerly flow over the western half of the GrIS. Instantaneous surface melt over northern basins is also associated with low pressure over the central Arctic. Basins associated with persistent summer melt in the southern and western GrIS are associated with the presence of an enhanced cloud cover, a resulting decreased downwelling solar radiative flux, and an enhanced downwelling longwave radiative flux. This contrasts with basins to the north and east, where an increased downwelling solar radiative flux plays a more important role in the onset of a melt event. The analysis emphasizes the importance of daily variability in synoptic conditions and their preferred association with melt events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Cullather, richard.cullather@nasa.gov

Abstract

Melt area is one of the most reliably monitored variables associated with surface conditions over the full Greenland Ice Sheet (GrIS). Surface melt is also an important indicator of surface mass balance and has potential relevance to the ice sheet’s global sea level contribution. Melt events are known to be spatially heterogeneous and have varying time scales. To understand the forcing mechanisms, it is necessary to examine the relation between the existing conditions and melt area on the time scales that melt is observed. Here, the authors conduct a regression analysis of atmospheric reanalysis variables including sea level pressure, near-surface winds, and components of the surface energy budget with surface melt. The regression analysis finds spatial heterogeneity in the associated atmospheric circulation conditions. For basins in the southern GrIS, there is an association between melt area and high pressure located south of the Denmark Strait, which allows for southerly flow over the western half of the GrIS. Instantaneous surface melt over northern basins is also associated with low pressure over the central Arctic. Basins associated with persistent summer melt in the southern and western GrIS are associated with the presence of an enhanced cloud cover, a resulting decreased downwelling solar radiative flux, and an enhanced downwelling longwave radiative flux. This contrasts with basins to the north and east, where an increased downwelling solar radiative flux plays a more important role in the onset of a melt event. The analysis emphasizes the importance of daily variability in synoptic conditions and their preferred association with melt events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Cullather, richard.cullather@nasa.gov
Save
  • Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63, 33833403, https://doi.org/10.1175/JAS3791.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamber, J., R. L. Layberry, and S. P. Gogenini, 2001: A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors. J. Geophys. Res., 106, 33 77333 780, https://doi.org/10.1029/2001JD900054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 8386, https://doi.org/10.1038/nature12002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, J. E., X. Fettweis, J. C. Stroeve, M. Tedesco, D. K. Hall, and K. Steffen, 2012: Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers. Cryosphere, 6, 821839, https://doi.org/10.5194/tc-6-821-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Q., D. H. Bromwich, and L. Bai, 1997: Precipitation over Greenland retrieved by a dynamic method and its relation to cyclonic activity. J. Climate, 10, 839870, https://doi.org/10.1175/1520-0442(1997)010<0839:POGRBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Global Modeling and Data Assimilation Tech. Memo. NASA/TM-1994-104606/Vol. 3, 85 pp.

  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Global Modeling and Data Assimilation Tech. Memo. NASA/TM-1994-104606/Vol. 15, 38 pp.

  • Colgan, W., J. E. Box, M. L. Andersen, X. Fettweis, B. Csathó, R. S. Fausto, D. Van As, and J. Wahr, 2015: Greenland high-elevation mass balance: Inference and implication of reference period (1961–90) imbalance. Ann. Glaciol., 56, 105117, https://doi.org/10.3189/2015AoG70A967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., S. M. J. Nowicki, B. Zhao, and M. J. Suarez, 2014: Evaluation of the surface representation of the Greenland Ice Sheet in a general circulation model. J. Climate, 27, 48354856, https://doi.org/10.1175/JCLI-D-13-00635.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., S. M. J. Nowicki, B. Zhao, and L. S. Koenig, 2016: A characterization of Greenland Ice Sheet surface melt and runoff in contemporary reanalyses and a regional climate model. Front. Earth Sci., 4, 10, https://doi.org/10.3389/feart.2016.00010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, P. G. Fogli, E. Manzini, S. Gualdi, and A. Navarra, 2014: European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model. Climate Dyn., 43, 7185, https://doi.org/10.1007/s00382-013-1873-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enderlin, E. M., I. M. Howat, S. Jeong, M.-J. Noh, J. H. van Angelen, and M. R. van den Broeke, 2014: An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41, 866872, https://doi.org/10.1002/2013GL059010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fausto, R. S., D. van As, J. E. Box, W. Colgan, P. L. Langen, and R. H. Mottram, 2016: The implication of nonradiative energy fluxes dominating Greenland ice sheet exceptional ablation area surface melt in 2012. Geophys. Res. Lett., 43, 26492658, https://doi.org/10.1002/2016GL067720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fettweis, X., G. Mabille, M. Erpicum, S. Nicolay, and M. Van den Broeke, 2011: The 1958–2009 Greenland ice sheet surface melt and the mid-tropospheric atmospheric circulation. Climate Dyn., 36, 139159, https://doi.org/10.1007/s00382-010-0772-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrell, 2009: The summer North Atlantic Oscillation: Past, present, and future. J. Climate, 22, 10821103, https://doi.org/10.1175/2008JCLI2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and R. C. Bell, 1990: North Atlantic blocking during January 1979: Linear theory. Quart. J. Roy. Meteor. Soc., 116, 12891313, https://doi.org/10.1002/qj.49711649603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Global Modeling and Assimilation Office, 2015a: MERRA-2 tavg1_2d_slv_Nx: 2d, hourly mean, time-averaged, single-level, assimilation, single-level diagnostics, version 5.12.4. Goddard Space Flight Center Distributed Active Archive Center, accessed 14 January 2016, https://doi.org/10.5067/VJAFPLI1CSIV.

    • Crossref
    • Export Citation
  • Global Modeling and Assimilation Office, 2015b: MERRA-2 tavg1_2d_rad_Nx: 2d, hourly mean, time-averaged, single-level, assimilation, radiation diagnostics, version 5.12.4. Goddard Space Flight Center Distributed Active Archive Center, accessed 14 January 2016, https://doi.org/10.5067/Q9QMY5PBNV1T.

    • Crossref
    • Export Citation
  • Global Modeling and Assimilation Office, 2015c: MERRA-2 tavg1_2d_flx_Nx: 2d, hourly mean, time-averaged, single-level, assimilation, surface flux diagnostics, version 5.12.4. Goddard Space Flight Center Distributed Active Archive Center, accessed 14 January 2016, https://doi.org/10.5067/7MCPBJ41Y0K6.

    • Crossref
    • Export Citation
  • Global Modeling and Assimilation Office, 2015d: MERRA-2 inst3_3d_asm_Np: 2d, 3-hourly, instantaneous, pressure-level, assimilation, assimilated meteorological fields, version 5.12.4. Goddard Space Flight Center Distributed Active Archive Center, accessed 14 January 2016, https://doi.org/10.5067/QBZ6MG944HW0.

    • Crossref
    • Export Citation
  • Greuell, W., and T. Konzelmann, 1994: Numerical modelling of the energy balance and englacial temperature of the Greenland Ice Sheet: Calculations for the ETH-Camp location (West Greenland, 1155 m a.s.l.). Global Planet. Change, 9, 91114, https://doi.org/10.1016/0921-8181(94)90010-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., D. K. Hall, C. A. Shuman, D. L. Worthen, and N. E. DiGirolamo, 2014: Greenland ice sheet melt from MODIS and associated atmospheric variability. Geophys. Res. Lett., 41, 16001607, https://doi.org/10.1002/2013GL059185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., S. V. Nghiem, C. B. Schaaf, N. E. DiGirolamo, and G. Neumann, 2009: Evaluation of surface and near-surface melt characteristics on the Greenland ice sheet using MODIS and QuikSCAT data. J. Geophys. Res., 114, F04006, https://doi.org/10.1029/2009JF001287.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2014: Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Climatol., 34, 10221037, https://doi.org/10.1002/joc.3743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., T. E. Cropper, P. D. Jones, A. A. Scaife, and R. Allan, 2015: Recent seasonal asymmetric changes in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland blocking index. Int. J. Climatol., 35, 25402554, https://doi.org/10.1002/joc.4157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., T. E. Cropper, R. J. Hall, and J. Cappelen, 2016: Greenland blocking index 1851–2015: A regional climate change signal. Int. J. Climatol., 36, 48474861, https://doi.org/10.1002/joc.4673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofer, S., A. J. Tedstone, X. Fettweis, and J. L. Bamber, 2017: Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci. Adv., 3, e1700584, https://doi.org/10.1126/sciadv.1700584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, H. Chepfer, N. Loeb, A. Morrison, and G. Cesana, 2016: Recent advances in Arctic cloud and climate research. Curr. Climate Change Rep., 2, 159169, https://doi.org/10.1007/s40641-016-0051-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., K. Van Tricht, S. Lhermitte, and T. S. L'Ecuyer, 2017: Polar clouds and radiation in satellite observations, reanalyses, and climate models. Geophys. Res. Lett., 44, 33553364, https://doi.org/10.1002/2016GL072242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Z. Chen, J. Francis, M. Song, T. Mote, and Y. Hu, 2016: Has Arctic sea ice loss contributed to increased surface melting of the Greenland Ice Sheet? J. Climate, 29, 33733386, https://doi.org/10.1175/JCLI-D-15-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and J. R. Key, 2016: Assessment of Arctic cloud cover anomalies in atmospheric reanalysis products using satellite data. J. Climate, 29, 60656083, https://doi.org/10.1175/JCLI-D-15-0861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, https://doi.org/10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattingly, K. S., C. A. Ramseyer, J. J. Rosen, T. L. Mote, and R. Muthyala, 2016: Increasing water vapor transport to the Greenland Ice Sheet revealed using self-organizing maps. Geophys. Res. Lett., 43, 92509258, https://doi.org/10.1002/2016GL070424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLeod, J. T., and T. L. Mote, 2016: Linking interannual variability in extreme Greenland blocking episodes to the recent increase in summer melting across the Greenland ice sheet. Int. J. Climatol., 36, 14841499, https://doi.org/10.1002/joc.4440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., 2012: Constraints on the profiles of total water PDF in AGCMs from AIRS and a high-resolution model. J. Climate, 25, 83418352, https://doi.org/10.1175/JCLI-D-11-00412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., I. A. Renfrew, and J. J. Cassano, 2013: Greenland plateau jets. Tellus, 65A, 17468, https://doi.org/10.3402/tellusa.v65i0.17468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, T. L., 2007: Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507, https://doi.org/10.1029/2007GL031976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, T. L., 2014: MEaSUREs Greenland surface melt daily 25km EASE-Grid 2.0, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 5 January 2014, https://doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0533.001.

    • Crossref
    • Export Citation
  • Mote, T. L., and M. R. Anderson, 1995: Variations in snowpack melt on the Greenland ice sheet based on passive-microwave measurements. J. Glaciol., 41, 5160, https://doi.org/10.1017/S0022143000017755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nghiem, S. V., and Coauthors, 2012: The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett., 39, L20502, https://doi.org/10.1029/2012GL053611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noël, B., X. Fettweis, W. J. van de Berg, M. R. van den Broeke, and M. Erpicum, 2014: Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: A study with the regional climate model MAR. Cryosphere, 8, 18711883, https://doi.org/10.5194/tc-8-1871-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajewicz, J., and S. J. Marshall, 2014: Variability and trends in anticyclonic circulation over the Greenland ice sheet, 1948–2013. Geophys. Res. Lett., 41, 28422850, https://doi.org/10.1002/2014GL059255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves Eyre, J. E. J., and X. Zeng, 2017: Evaluation of Greenland near surface air temperature datasets. Cryosphere, 11, 15911605, https://doi.org/10.5194/tc-11-1591-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennermalm, A. K., L. C. Smith, J. C. Stroeve, and V. W. Chu, 2009: Does sea ice influence Greenland ice sheet surface-melt? Environ. Res. Lett., 4, 024011, https://doi.org/10.1088/1748-9326/4/2/024011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., I. Velicogna, M. R. van den Broeke, A. Monaghan, and J. T. M. Lenaerts, 2011: Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38, L05503, https://doi.org/10.1029/2011GL046583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robasky, F. M., and D. H. Bromwich, 1994: Greenland precipitation estimates from the atmospheric moisture budget. Geophys. Res. Lett., 21, 24952498, https://doi.org/10.1029/94GL01915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-W., D. E. Waliser, C.-K. Lee, B. Tian, T. Scambos, B.-M. Kim, J. H. van Angelen, and M. R. van den Broeke, 2015: Accelerated mass loss from Greenland ice sheet: Links to atmospheric circulation in the North Atlantic. Global Planet. Change, 128, 6171, https://doi.org/10.1016/j.gloplacha.2015.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., J. Stroeve, A. P. Barrett, and L. N. Boisvert, 2016: Summer atmospheric circulation anomalies over the Arctic Ocean and their influence on September sea ice extent: A cautionary tale. J. Geophys. Res. Atmos., 121, 11 46311 485, https://doi.org/10.1002/2016JD025161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189, https://doi.org/10.1126/science.1228102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, M., X. Fettweis, M. R. van den Broeke, R. S. W. van de Wal, C. J. P. P. Smeets, W. J. van de Berg, M. C. Serreze, and J. E. Box, 2011: The role of albedo and accumulation in the 2010 melting record in Greenland. Environ. Res. Lett., 6, 014005, https://doi.org/10.1088/1748-9326/6/1/014005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, M., X. Fettweis, T. Mote, J. Wahr, P. Alexander, J. E. Box, and B. Wouters, 2013: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Cryosphere, 7, 615630, https://doi.org/10.5194/tc-7-615-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, M., T. Mote, X. Fettweis, E. Hanna, J. Jeyaratnam, J. F. Booth, R. Datta, and K. Briggs, 2016a: Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nat. Commun., 7, 11723, https://doi.org/10.1038/ncomms11723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, M., S. Doherty, X. Fettweis, P. Alexander, J. Jeyaratnam, and J. Stroeve, 2016b: The darkening of the Greenland ice sheet: Trends, drivers, and projections (1981–2100). Cryosphere, 10, 477496, https://doi.org/10.5194/tc-10-477-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., and Coauthors, 2009: Partitioning recent Greenland mass loss. Science, 326, 984986, https://doi.org/10.1126/science.1178176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., E. M. Enderlin, I. M. Howat, P. K. Munneke, B. P. Y. Noël, W. J. van de Berg, E. van Meijgaard, and B. Wouters, 2016: On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere, 10, 19331946, https://doi.org/10.5194/tc-10-1933-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Tricht, K., and Coauthors, 2016: Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun., 7, 10266, https://doi.org/10.1038/ncomms10266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velicogna, I., T. C. Sutterley, and M. R. van den Broeke, 2014: Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys. Res. Lett., 41, 81308137, https://doi.org/10.1002/2014GL061052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vernon, C. L., J. L. Bamber, J. E. Box, M. R. van den Broeke, X. Fettweis, E. Hanna, and P. Huybrechts, 2013: Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere, 7, 599614, https://doi.org/10.5194/tc-7-599-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., M. B. Giovinetto, M. A. Beckley, and J. L. Saba, 2012: Antarctic and Greenland drainage systems. NASA Goddard Space Flight Center Cryospheric Sciences Laboratory, http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1732 390 84
PDF Downloads 620 126 8