ENSO-Related Global Ocean Heat Content Variations

Quran Wu State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China

Search for other papers by Quran Wu in
Current site
Google Scholar
PubMed
Close
,
Xuebin Zhang Centre for Southern Hemisphere Oceans Research, CSIRO Oceans and Atmosphere, Hobart, Australia., Surveying and Spatial Sciences, School of Technology, Environments and Design, University of Tasmania, Hobart, Tasmania, Australia

Search for other papers by Xuebin Zhang in
Current site
Google Scholar
PubMed
Close
,
John A. Church Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by John A. Church in
Current site
Google Scholar
PubMed
Close
, and
Jianyu Hu State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China

Search for other papers by Jianyu Hu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The modulation of the full-depth global integrated ocean heat content (GOHC) by El Niño–Southern Oscillation (ENSO) has been estimated in various studies. However, the quantitative results and the mechanisms at work remain uncertain. Here, a dynamically consistent ocean state estimate is utilized to study the large-scale integrated heat content variations during ENSO events for the global ocean. The full-depth GOHC exhibits a cooling tendency during the peak and decaying phases of El Niño, which is a result of the negative surface heat flux (SHF) anomaly in the tropics (30°S–30°N), partially offset by the positive SHF anomaly at higher latitudes. The tropical SHF anomaly acts as a lagged response to damp the convergence of oceanic heat transport, which redistributes heat from the extratropics and the subsurface layers (100–440 m) into the upper tropical oceans (0–100 m) during the onset and peak of El Niño. These results highlight the global nature of the oceanic heat redistribution during ENSO events, as well as how the redistribution process affects the full-depth GOHC. The meridional heat exchange across 30°S and 30°N is driven by ocean current anomalies, while multiple processes contribute to the vertical heat exchange across 100 m simultaneously. Heat advection due to unbalanced mass transport is distinguished from the mass balanced one, with significant contributions from the meridional and zonal overturning cells being identified for the latter in the vertical direction. Results presented here have implications for monitoring the planetary energy budget and evaluating ENSO’s global imprints on ocean heat content in different estimates.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Xuebin Zhang, xuebin.zhang@csiro.au; Jianyu Hu, hujy@xmu.edu.cn

Abstract

The modulation of the full-depth global integrated ocean heat content (GOHC) by El Niño–Southern Oscillation (ENSO) has been estimated in various studies. However, the quantitative results and the mechanisms at work remain uncertain. Here, a dynamically consistent ocean state estimate is utilized to study the large-scale integrated heat content variations during ENSO events for the global ocean. The full-depth GOHC exhibits a cooling tendency during the peak and decaying phases of El Niño, which is a result of the negative surface heat flux (SHF) anomaly in the tropics (30°S–30°N), partially offset by the positive SHF anomaly at higher latitudes. The tropical SHF anomaly acts as a lagged response to damp the convergence of oceanic heat transport, which redistributes heat from the extratropics and the subsurface layers (100–440 m) into the upper tropical oceans (0–100 m) during the onset and peak of El Niño. These results highlight the global nature of the oceanic heat redistribution during ENSO events, as well as how the redistribution process affects the full-depth GOHC. The meridional heat exchange across 30°S and 30°N is driven by ocean current anomalies, while multiple processes contribute to the vertical heat exchange across 100 m simultaneously. Heat advection due to unbalanced mass transport is distinguished from the mass balanced one, with significant contributions from the meridional and zonal overturning cells being identified for the latter in the vertical direction. Results presented here have implications for monitoring the planetary energy budget and evaluating ENSO’s global imprints on ocean heat content in different estimates.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Xuebin Zhang, xuebin.zhang@csiro.au; Jianyu Hu, hujy@xmu.edu.cn
Save
  • Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modell., 7, 269284, https://doi.org/10.1016/j.ocemod.2003.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013a: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2013b: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, https://doi.org/10.1002/grl.50382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brady, E. C., 1994: Interannual variability of meridional heat transport in a numerical model of the upper equatorial Pacific Ocean. J. Phys. Oceanogr., 24, 26752694, https://doi.org/10.1175/1520-0485(1994)024<2675:IVOMHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., R. M. Ponte, G. Forget, and P. Heimbach, 2014: Low-frequency SST and upper-ocean heat content variability in the North Atlantic. J. Climate, 27, 49965018, https://doi.org/10.1175/JCLI-D-13-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., R. M. Ponte, G. Forget, and P. Heimbach, 2015: Determining the origins of advective heat transport convergence variability in the North Atlantic. J. Climate, 28, 39433956, https://doi.org/10.1175/JCLI-D-14-00579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campin, J.-M., J. Marshall, and D. Ferreira, 2008: Sea ice–ocean coupling using a rescaled vertical coordinate z*. Ocean Modell., 24, 114, https://doi.org/10.1016/j.ocemod.2008.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cazenave, A., H.-B. Dieng, B. Meyssignac, K. von Schuckmann, B. Decharme, and E. Berthier, 2014: The rate of sea-level rise. Nat. Climate Change, 4, 358361, https://doi.org/10.1038/nclimate2159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and K.-K. Tung, 2014: Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345, 897903, https://doi.org/10.1126/science.1254937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, M. D. Palmer, J. Zhu, and J. P. Abraham, 2016: Observed and simulated full-depth ocean heat-content changes for 1970–2005. Ocean Sci., 12, 925935, https://doi.org/10.5194/os-12-925-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, https://doi.org/10.1175/JCLI-D-11-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., J. A. Church, N. J. White, P. J. Gleckler, S. E. Wijffels, P. M. Barker, and J. R. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093, https://doi.org/10.1038/nature07080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2016: ECCO version 4: second release. https://dspace.mit.edu/handle/1721.1/102062.

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515, https://doi.org/10.1007/s003820000059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., and J. D. Neelin, 1993: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part I: Numerical results. J. Atmos. Sci., 50, 34773503, https://doi.org/10.1175/1520-0469(1993)050<3477:MOITOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., and S.-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26, 29892992, https://doi.org/10.1029/1999GL002297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and A. N. Birnbaum, 2017: As El Niño builds, Pacific warm pool expands, ocean gains more heat. Geophys. Res. Lett., 44, 438445, https://doi.org/10.1002/2016GL071767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., B. M. Sloyan, W. S. Kessler, and K. E. McTaggart, 2002: Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s. Prog. Oceanogr., 52, 3161, https://doi.org/10.1016/S0079-6611(02)00021-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsman, C. A., and G. J. van Oldenborgh, 2011: Tracing the upper ocean’s “missing heat.” Geophys. Res. Lett., 38, L14610, https://doi.org/10.1029/2011GL048417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-B., T. Lee, and I. Fukumori, 2007: Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Niño-3 region. J. Climate, 20, 38223843, https://doi.org/10.1175/JCLI4206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp., doi:10.5065/D6KK98Q6.

    • Crossref
    • Export Citation
  • Large, W. G., G. Danabasoglu, J. C. McWilliams, P. R. Gent, and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31, 518536, https://doi.org/10.1175/1520-0485(2001)031<0518:ECOAGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., I. Fukumori, and B. Tang, 2004: Temperature advection: Internal versus external processes. J. Phys. Oceanogr., 34, 19361944, https://doi.org/10.1175/1520-0485(2004)034<1936:TAIVEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., and L. Yu, 2016: Variations of the global net air–sea heat flux during the “hiatus” period (2001–10). J. Climate, 29, 36473660, https://doi.org/10.1175/JCLI-D-15-0626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., C. Wunsch, P. Heimbach, and G. Forget, 2015: Vertical redistribution of oceanic heat content. J. Climate, 28, 38213833, https://doi.org/10.1175/JCLI-D-14-00550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., C. G. Piecuch, R. M. Ponte, G. Forget, C. Wunsch, and P. Heimbach, 2017: Change of the global ocean vertical heat transport over 1993–2010. J. Climate, 30, 53195327, https://doi.org/10.1175/JCLI-D-16-0569.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., J. M. Lyman, G. C. Johnson, R. P. Allan, D. R. Doelling, T. Wong, B. J. Soden, and G. L. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110113, https://doi.org/10.1038/ngeo1375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macdonald, A. M., and M. O. Baringer, 2013: Ocean heat transport. Ocean Circulation and Climate: A 21st Century Perspective, S. Gerold et al., Eds., Academic Press, 759–785.

    • Crossref
    • Export Citation
  • Marshall, J., A. Adcroft, C. N. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, M., and L. Haimberger, 2012: Poleward atmospheric energy transports and their variability as evaluated from ECMWF reanalysis data. J. Climate, 25, 734752, https://doi.org/10.1175/JCLI-D-11-00202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, M., K. E. Trenberth, L. Haimberger, and J. T. Fasullo, 2013: The response of tropical atmospheric energy budgets to ENSO. J. Climate, 26, 47104724, https://doi.org/10.1175/JCLI-D-12-00681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, M., L. Haimberger, and M. A. Balmaseda, 2014: On the energy exchange between tropical ocean basins related to ENSO. J. Climate, 27, 63936403, https://doi.org/10.1175/JCLI-D-14-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, https://doi.org/10.1029/2012GL051826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, https://doi.org/10.1038/nclimate1229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., 2005: Meridional extent and interannual variability of the Pacific Ocean tropical–subtropical warm water exchange. J. Phys. Oceanogr., 35, 323335, https://doi.org/10.1175/JPO-2694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2001: Interannual variability in warm water volume transports in the equatorial Pacific during 1993–99. J. Phys. Oceanogr., 31, 13241345, https://doi.org/10.1175/1520-0485(2001)031<1324:IVIWWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picaut, J., M. Ioualalen, C. Menkes, T. Delcroix, and M. J. McPhaden, 1996: Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274, 14861489, https://doi.org/10.1126/science.274.5292.1486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. du Penhoat, 1997: An advective–reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663666, https://doi.org/10.1126/science.277.5326.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., R. M. Ponte, C. M. Little, M. W. Buckley, and I. Fukumori, 2017: Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content. J. Geophys. Res. Oceans, 122, 71817197, https://doi.org/10.1002/2017JC012845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 255–315.

  • Roemmich, D., and J. Gilson, 2011: The global ocean imprint of ENSO. Geophys. Res. Lett., 38, L13606, https://doi.org/10.1029/2011GL047992.

  • Roemmich, D., J. A. Church, J. Gilson, D. P. Monselesan, P. Sutton, and S. E. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. J. McPhaden, and W. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2002: Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107, 3118, https://doi.org/10.1029/2001JC000888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., K. Ueyoshi, A. Köhl, W. G. Large, S. A. Josey, and C. Wunsch, 2004: Estimating air–sea fluxes of heat, freshwater, and momentum through global ocean data assimilation. J. Geophys. Res., 109, C05023, https://doi.org/10.1029/2003JC002082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., M. A. Balmaseda, P. Heimbach, A. Köhl, and A. T. Weaver, 2016: Ocean data assimilation in support of climate applications: Status and perspectives. Annu. Rev. Mar. Sci., 8, 491518, https://doi.org/10.1146/annurev-marine-122414-034113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., and K. E. Trenberth, 1998: Coordinated heat removal from the equatorial Pacific during the 1986-87 El Niño. Geophys. Res. Lett., 25, 26592662, https://doi.org/10.1029/98GL01813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 31293144, https://doi.org/10.1175/JCLI-D-13-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. J. McPhaden, 2000: The surface-layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability. J. Phys. Oceanogr., 30, 29893008, https://doi.org/10.1175/1520-0485(2001)031<2989:TSLHBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. J. McPhaden, 2001: Surface layer temperature balance in the equatorial Pacific during the 1997–98 El Niño and 1998–99 La Niña. J. Climate, 14, 33933407, https://doi.org/10.1175/1520-0442(2001)014<3393:SLTBIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S., D. Roemmich, D. Monselesan, J. Church, and J. Gilson, 2016: Ocean temperatures chronicle the ongoing warming of Earth. Nat. Climate Change, 6, 116118, https://doi.org/10.1038/nclimate2924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, J. K., D. Roemmich, and B. Cornuelle, 2004: Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res., 109, C12036, https://doi.org/10.1029/2003JC002260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2013: Dynamically and kinematically consistent global ocean circulation and ice state estimates. Int. Geophys., 103, 553579, https://doi.org/10.1016/B978-0-12-391851-2.00021-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527540, https://doi.org/10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1989: Oceanic heat content variability and El Niño cycles. J. Phys. Oceanogr., 19, 475486, https://doi.org/10.1175/1520-0485(1989)019<0475:OHCVAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and M. J. McPhaden, 2006: Wind stress variations and interannual sea surface temperature anomalies in the eastern equatorial Pacific. J. Climate, 19, 226241, https://doi.org/10.1175/JCLI3618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and M. J. McPhaden, 2008: Eastern equatorial Pacific forcing of ENSO sea surface temperature anomalies. J. Climate, 21, 60706079, https://doi.org/10.1175/2008JCLI2422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and M. J. McPhaden, 2010: Surface layer heat balance in the eastern equatorial Pacific Ocean on interannual time scales: Influence of local versus remote wind forcing. J. Climate, 23, 43754394, https://doi.org/10.1175/2010JCLI3469.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1090 352 39
PDF Downloads 832 183 17