Improvement of Soil Respiration Parameterization in a Dynamic Global Vegetation Model and Its Impact on the Simulation of Terrestrial Carbon Fluxes

Dongmin Kim School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Dongmin Kim in
Current site
Google Scholar
PubMed
Close
,
Myong-In Lee School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Myong-In Lee in
Current site
Google Scholar
PubMed
Close
, and
Eunkyo Seo School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Eunkyo Seo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Q10 value represents the soil respiration sensitivity to temperature often used for the parameterization of the soil decomposition process has been assumed to be a constant in conventional numerical models, whereas it exhibits significant spatial and temporal variation in the observations. This study develops a new parameterization method for determining Q10 by considering the soil respiration dependence on soil temperature and moisture obtained by multiple regression for each vegetation type. This study further investigates the impacts of the new parameterization on the global terrestrial carbon flux. Our results show that a nonuniform spatial distribution of Q10 tends to better represent the dependence of the soil respiration process on heterogeneous surface vegetation type compared with the control simulation using a uniform Q10. Moreover, it tends to improve the simulation of the relationship between soil respiration and soil temperature and moisture, particularly over cold and dry regions. The modification has an impact on the soil respiration and carbon decomposition process, which changes gross primary production (GPP) through controlling nutrient assimilation from soil to vegetation. It leads to a realistic spatial distribution of GPP, particularly over high latitudes where the original model has a significant underestimation bias. Improvement in the spatial distribution of GPP leads to a substantial reduction of global mean GPP bias compared with the in situ observation-based reference data. The results highlight that the enhanced sensitivity of soil respiration to the subsurface soil temperature and moisture introduced by the nonuniform spatial distribution of Q10 has contributed to improving the simulation of the terrestrial carbon fluxes and the global carbon cycle.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Myong-In Lee, milee@unist.ac.kr

Abstract

The Q10 value represents the soil respiration sensitivity to temperature often used for the parameterization of the soil decomposition process has been assumed to be a constant in conventional numerical models, whereas it exhibits significant spatial and temporal variation in the observations. This study develops a new parameterization method for determining Q10 by considering the soil respiration dependence on soil temperature and moisture obtained by multiple regression for each vegetation type. This study further investigates the impacts of the new parameterization on the global terrestrial carbon flux. Our results show that a nonuniform spatial distribution of Q10 tends to better represent the dependence of the soil respiration process on heterogeneous surface vegetation type compared with the control simulation using a uniform Q10. Moreover, it tends to improve the simulation of the relationship between soil respiration and soil temperature and moisture, particularly over cold and dry regions. The modification has an impact on the soil respiration and carbon decomposition process, which changes gross primary production (GPP) through controlling nutrient assimilation from soil to vegetation. It leads to a realistic spatial distribution of GPP, particularly over high latitudes where the original model has a significant underestimation bias. Improvement in the spatial distribution of GPP leads to a substantial reduction of global mean GPP bias compared with the in situ observation-based reference data. The results highlight that the enhanced sensitivity of soil respiration to the subsurface soil temperature and moisture introduced by the nonuniform spatial distribution of Q10 has contributed to improving the simulation of the terrestrial carbon fluxes and the global carbon cycle.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Myong-In Lee, milee@unist.ac.kr
Save
  • Amundson, R., 2001: The carbon budget in soil. Annu. Rev. Earth Planet. Sci., 29, 535562, https://doi.org/10.1146/annurev.earth.29.1.535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anav, A., and Coauthors, 2013: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth system models. J. Climate, 26, 68016843, https://doi.org/10.1175/JCLI-D-12-00417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andren, O., and K. Paustian, 1987: Barley straw decomposition in the field: A comparison of models. Biology, 68, 11901200, https://doi.org/10.2307/1939203.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2009: The effect of terrestrial photosynthesis down regulation on the twentieth-century carbon budget simulated with the CCCma Earth system model. J. Climate, 22, 60666088, https://doi.org/10.1175/2009JCLI3037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2013: Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Climate, 26, 52895314, https://doi.org/10.1175/JCLI-D-12-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beer, C., and Coauthors, 2010: Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329, 834838, https://doi.org/10.1126/science.1184984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belay-Tedla, A., X. H. Zhou, B. Su, S. Q. Wan, and Y. Q. Luo, 2009: Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biol. Biochem., 41, 110116, https://doi.org/10.1016/j.soilbio.2008.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, https://doi.org/10.1126/science.1155121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., and S. Levis, 2010: Quantifying carbon–nitrogen feedbacks in the Community Land Model (CLM4). Geophys. Res. Lett., 37, L07401, https://doi.org/10.1029/2010GL042430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., P. J. Lawrence, K. W. Oleson, S. Levis, M. Jung, M. Reichstein, D. M. Lawrence, and S. C. Swenson, 2011: Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res., 116, G02014, https://doi.org/10.1029/2010JG001593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond-Lamberty, B., and A. Thomson, 2010: Temperature-associated increases in the global soil respiration record. Nature, 464, 579582, https://doi.org/10.1038/nature08930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brovkin, V., P. M. van Bodegom, T. Kleinen, C. Wirth, W. K. Cornwell, J. H. Cornelissen, and J. Kattge, 2012: Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences, 9, 565576, https://doi.org/10.5194/bg-9-565-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., M. Ribas-Carbo, and J. A. Berry, 1992: Coupled photosynthesis–stomatal conductance model for leaves of C4 plants. Funct. Plant Biol., 19, 519538, https://doi.org/10.1071/PP9920519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184187, https://doi.org/10.1038/35041539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craine, J. M., N. Fierer, and K. K. McLauchlan, 2010: Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci., 3, 854857, https://doi.org/10.1038/ngeo1009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, E. A., E. Belk, and R. D. Boone, 1998: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol., 4, 217227, https://doi.org/10.1046/j.1365-2486.1998.00128.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2006: The hydrologic feedback pathway for land–climate coupling. J. Hydrometeor., 7, 857867, https://doi.org/10.1175/JHM526.1.

  • Dufresne J. L., P. Friedlingstein, M. Berthelot, L. Bopp, P. Ciais, L. Fairhead, H. Le Treut, and P. Monfray, 2002: On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 29, 1405, https://doi.org/10.1029/2001GL013777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2013: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Climate, 26, 22472267, https://doi.org/10.1175/JCLI-D-12-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., S. von Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 7890, https://doi.org/10.1007/BF00386231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10, 603628, https://doi.org/10.1029/96GB02692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foley, J. A., S. Levis, and I. C. Prentice, 1998: Coupling dynamic models of climate and vegetation. Global Change Biol., 4, 561579, https://doi.org/10.1046/j.1365-2486.1998.t01-1-00168.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., J. L. Dufresne, P. M. Cox, and P. Rayner, 2003: How positive is the feedback between climate change and the carbon cycle? Tellus, 55B, 692700, https://doi.org/10.1034/j.1600-0889.2003.01461.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353, https://doi.org/10.1175/JCLI3800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., M. Meinshausen, V. K. Arora, C. D. Jones, A. Anav, S. K. Liddicoat, and R. Knutti, 2014: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Climate, 27, 511525, https://doi.org/10.1175/JCLI-D-12-00579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerten, D., S. Schaphoff, U. Haberlandt, W. Lucht, and S. Sitch, 2004: Terrestrial vegetation and water balance—Hydrological evaluation of a dynamic global vegetation model. J. Hydrol., 286, 249270, https://doi.org/10.1016/j.jhydrol.2003.09.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., C. D. Jones, P. Cadule, and P. Friedlingstein, 2009: Quantifying carbon cycle feedbacks. J. Climate, 22, 52325249, https://doi.org/10.1175/2009JCLI2949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashimoto, S., N. Carvalhais, A. Ito, M. Migliavacca, K. Nishina, and M. Reichstein, 2015: Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences, 12, 41214132, https://doi.org/10.5194/bg-12-4121-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, F. M., and Coauthors, 2014: Causes and implications of persistent atmospheric carbon dioxide biases in Earth system models. J. Geophys. Res. Biogeosci., 119, 141162, https://doi.org/10.1002/2013JG002381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, E. F. Stocker, D. T. Bolvin, and E. J. Nelkin, 2003: Analysis of TRMM 3-hourly multi-satellite precipitation estimates computed in both real and post-real time. 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., P4.11, https://ams.confex.com/ams/annual2003/techprogram/paper_54906.htm.

  • Hui, D., and Y. Luo, 2004: Evaluation of soil CO2 production and transport in Duke Forest using a process-based modeling approach. Global Biogeochem. Cycles, 18, GB4029, https://doi.org/10.1029/2004GB002297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hursh, A., A. Ballantyne, L. Cooper, M. Maneta, J. Kimball, and J. Watts, 2017: The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Global Change Biol., 23, 20902103, https://doi.org/10.1111/gcb.13489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilyina, T., K. D. Six, J. Segschneider, E. Maier-Reimer, H. Li, and I. Núñez-Riboni, 2013: Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J. Adv. Model. Earth Syst., 5, 287315, https://doi.org/10.1029/2012MS000178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P., and I. Harris, 2013: CRU TS3.21: Climatic Research Unit (CRU) time-series (TS) version 3.21 of high resolution gridded data of month-by-month variation in climate (January 1901–December 2012), https://doi.org/10.5285/D0E1585D-3417-485F-87AE-4FCECF10A992.

    • Crossref
    • Export Citation
  • Jung, M., K. Henkel, M. Herold, and G. Churkina, 2006: Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens. Environ., 101, 534553, https://doi.org/10.1016/j.rse.2006.01.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 20012013, https://doi.org/10.5194/bg-6-2001-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karhu, K., and Coauthors, 2014: Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 513, 8184, https://doi.org/10.1038/nature13604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., M.-I. Lee, S.-J. Jeong, J. Im, D. H. Cha, and S. Lee, 2017: Intercomparison of terrestrial carbon fluxes and carbon use efficiency simulated by CMIP5 Earth system models. Asia-Pac. J. Atmos. Sci., 54, 145163, https://doi.org/10.1007/s13143-017-0066-8.

    • Search Google Scholar
    • Export Citation
  • Kim, J. S., J.-S. Kug, J.-H. Yoon, and S.-J. Jeong, 2016: Increased atmospheric CO2 growth rate during El Niño driven by reduced terrestrial productivity in the CMIP5 ESMs. J. Climate, 29, 87838805, https://doi.org/10.1175/JCLI-D-14-00672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, M. U. F., 1995: The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem., 27, 753760, https://doi.org/10.1016/0038-0717(94)00242-S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koizumi, H., M. Kontturi, S. Mariko, T. Nakadai, Y. Bekku, and T. Mela, 2010: Soil respiration in three soil types in agricultural ecosystems in Finland. Soil Plant Sci., 49, 6574, https://doi.org/10.1080/09064719950135560.

    • Search Google Scholar
    • Export Citation
  • Kutsch, W. L., M. Bahn, and A. Heinemeyer, 2009: Soil Carbon Dynamics: An Integrated Methodology. Cambridge University Press, 298 pp.

    • Crossref
    • Export Citation
  • Lefèvre, R., and Coauthors, 2014: Higher temperature sensitivity for stable than for labile soil organic carbon—Evidence from incubations of long-term bare fallow soils. Global Change Biol., 20, 633640, https://doi.org/10.1111/gcb.12402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2009: Trends in the sources and sinks of carbon dioxide. Nat. Geosci., 2, 831836, https://doi.org/10.1038/ngeo689.

  • Liski, J., H. Ilvesniemi, A. Makel, and K. J. Westman, 1999: CO2 emissions from soil in response to climatic warming are overestimated: The decomposition of old soil organic matter is tolerant of temperature. Ambio, 28, 171174.

    • Search Google Scholar
    • Export Citation
  • Lloyd, J., and J. A. Taylor, 1994: On the temperature dependence of soil respiration. Funct. Ecol., 8, 315323, https://doi.org/10.2307/2389824.

  • Long, M. C., K. Lindsay, S. Peacock, J. K. Moore, and S. C. Doney, 2013: Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J. Climate, 26, 67756800, https://doi.org/10.1175/JCLI-D-12-00184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., S. Wan, D. Hui, and L. L. Wallace, 2001: Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622625, https://doi.org/10.1038/35098065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., and Coauthors, 2016: Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochem. Cycles, 30, 4056, https://doi.org/10.1002/2015GB005239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luyssaert, S., and Coauthors, 2007: The CO2-balance of boreal, temperate and tropical forest derived from a global database. Global Change Biol., 13, 25092537, https://doi.org/10.1111/j.1365-2486.2007.01439.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahecha, M. D., and Coauthors, 2010: Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329, 838840, https://doi.org/10.1126/science.1189587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malhi, Y., D. D. Baldocchi, and P. G. Jarvis, 1999: The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ., 22, 715740, https://doi.org/10.1046/j.1365-3040.1999.00453.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., T. R. Carter, P. D. Jones, M. Hulme, and M. New, 2004: A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre for Climate Change Research Working Paper 55, 30 pp., http://ipcc-data.org/docs/tyndall_working_papers_wp55.pdf.

  • Monteith, J., 1972: Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol., 9, 747766, https://doi.org/10.2307/2401901.

  • Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running, 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 15601563, https://doi.org/10.1126/science.1082750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obata, A., 2007: Climate–carbon cycle model response to freshwater discharge into the North Atlantic. J. Climate, 20, 59625976, https://doi.org/10.1175/2007JCLI1808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp.

  • Piao, S., P. Ciais, P. Friedlingstein, N. Noblet-Ducoudré, P. Cadule, N. Viovy, and T. Wang, 2009: Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochem. Cycles, 23, GB4026, https://doi.org/10.1029/2008GB003339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, Y., M. Xu, and J. Wu, 2002: Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: Nonlinearity begets surprises. Ecol. Modell., 153, 131142, https://doi.org/10.1016/S0304-3800(01)00506-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raich, J. W., and W. Schlesinger, 1992: The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 8199, https://doi.org/10.3402/tellusb.v44i2.15428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raich, J. W., C. S. Potter, and D. Bhagawati, 2002: Interannual variability in global soil respiration, 1980–1994. Global Change Biol., 8, 800812, https://doi.org/10.1046/j.1365-2486.2002.00511.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regnier, P., and Coauthors, 2013: Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci., 6, 597607, https://doi.org/10.1038/ngeo1830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichstein, M., J. D. Tenhunen, O. Roupsard, J.-M. Ourcival, S. Rambal, S. Dore, and R. Valentini, 2002: Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: Drought effects and decomposition dynamics. Funct. Ecol., 16, 2739, https://doi.org/10.1046/j.0269-8463.2001.00597.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Running, S. W., R. R. Nemani, F. A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto, 2004: A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54, 547560, https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, M. G., 1991: Effects of climate change on plant respiration. Ecol. Appl., 1, 157167, https://doi.org/10.2307/1941808.

  • Schaphoff, S., and Coauthors, 2018: LPJmL4—A dynamic global vegetation model with managed land—Part 1: Model description. Geosci. Model Dev., 11, 13431375, https://doi.org/10.5194/gmd-11-1343-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505531, https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, P., X. Zeng, K. Sakaguchi, R. K. Monson, and X. Zeng, 2013: Terrestrial carbon cycle: Climate relations in eight CMIP5 Earth system models. J. Climate, 26, 87448764, https://doi.org/10.1175/JCLI-D-12-00831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, https://doi.org/10.1175/JCLI3790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol., 9, 161185, https://doi.org/10.1046/j.1365-2486.2003.00569.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., S. K. Gupta, S. J. Cox, M. J. Colleen, T. Zhang, and M. Chiacchio, 2004: 12-year surface radiation budget data set. GEWEX News, No. 14 (4), International GEWEX Project Office, Silver Spring, MD, 10–12.

  • Suseela, V., R. T. Conant, M. D. Wallenstein, and J. S. Dukes, 2012: Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biol., 18, 336348, https://doi.org/10.1111/j.1365-2486.2011.02516.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, J., and D. D. Baldocchi, 2005: Spatial–temporal variation in soil respiration in an oak–grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochem., 73, 183207, https://doi.org/10.1007/s10533-004-5889-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, B. R., D. Parkinson, and W. F. J. Parsons, 1989: Nitrogen and lignin content as predictors of litter decay rates: A microcosm test. Ecology, 70, 97104, https://doi.org/10.2307/1938416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and N. A. Rosenbloom, 2005: Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol. Modell., 189, 2548, https://doi.org/10.1016/j.ecolmodel.2005.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and Coauthors, 2009: Carbon–nitrogen interactions regulate climate-carbon cycle feedbacks: Results from an atmosphere–ocean general circulation model. Biogeosciences, 6, 20992120, https://doi.org/10.5194/bg-6-2099-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjiputra, J. F., C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, Ø. Seland, and C. Heinze, 2013: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev., 6, 301325, https://doi.org/10.5194/gmd-6-301-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd-Brown, K. E. O., J. T. Randerson, W. M. Post, F. M. Hoffman, C. Tarnocai, E. A. G. Schuur, and S. D. Allison, 2013: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences, 10, 17171736, https://doi.org/10.5194/bg-10-1717-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trumbore, S., 2006: Carbon respired by terrestrial ecosystems—Recent progress and challenges. Global Change Biol., 12, 141153, https://doi.org/10.1111/j.1365-2486.2006.01067.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van’t Hoff, J. H., 1898: Part I: Chemical dynamics. Lectures on Theoretical and Physical Chemistry. Edward Arnold, 224–229.

  • Wan, S., and Y. Luo, 2003: Substrate regulation of soil respiration in a tallgrass prairie: Results of a clipping and shading experiment. Global Biogeochem. Cycles, 17, 1054, https://doi.org/10.1029/2002GB001971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. P., R. M. Law, and B. Pak, 2010: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7, 22612282, https://doi.org/10.5194/bg-7-2261-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, https://doi.org/10.5194/gmd-4-845-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2013: Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J. Geophys. Res. Atmos., 118, 43264347, https://doi.org/10.1002/jgrd.50320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, M., and Y. Qi, 2001: Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biol., 7, 667677, https://doi.org/10.1046/j.1354-1013.2001.00435.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2011: Meteorological Research Institute–Earth System Model version 1 (MRI-ESM1): Model description. Meteorological Research Institute Tech. Rep. 64, 88 pp., https://doi.org/10.11483/mritechrepo.64.

    • Crossref
    • Export Citation
  • Zhao, M. S., F. A. Heinsch, R. R. Nemani, and S. W. Running, 2005: Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ., 95, 164176, https://doi.org/10.1016/j.rse.2004.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., P. Shi, D. Hui, and Y. Luo, 2009: Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon–climate feedback. J. Geophys. Res., 114, G02016, https://doi.org/10.1029/2008JG000850.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 811 244 22
PDF Downloads 689 185 10