The Northeast Winter Monsoon over the Indian Subcontinent and Southeast Asia: Evolution, Interannual Variability, and Model Simulations

Agniv Sengupta Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Agniv Sengupta in
Current site
Google Scholar
PubMed
Close
and
Sumant Nigam Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Sumant Nigam in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The northeast monsoon (NEM) brings the bulk of annual rainfall to southeastern peninsular India, Sri Lanka, and the neighboring Southeast Asian countries. This October–December monsoon is referred to as the winter monsoon in this region. In contrast, the southwest summer monsoon brings bountiful rainfall to the Indo-Gangetic Plain. The winter monsoon region is objectively demarcated from analysis of the timing of peak monthly rainfall. Because of the region’s complex terrain, in situ precipitation datasets are assessed using high-spatiotemporal-resolution Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, prior to their use in monsoon evolution, variability, and trend analyses. The Global Precipitation Climatology Center’s in situ analysis showed the least bias from TRMM.

El Niño–Southern Oscillation’s (ENSO) impact on NEM rainfall is shown to be significant, leading to stronger NEM rainfall over southeastern peninsular India and Sri Lanka but diminished rainfall over Thailand, Vietnam, and the Philippines. The impact varies subseasonally, being weak in October and strong in November. The positive anomalies over peninsular India are generated by anomalous anticyclonic flow centered over the Bay of Bengal, which is forced by an El Niño–related reduction in deep convection over the Maritime Continent.

The historical twentieth-century climate simulations informing the Intergovernmental Panel on Climate Change’s Fifth Assessment (IPCC-AR5) show varied deficiencies in the NEM rainfall distribution and a markedly weaker (and often unrealistic) ENSO–NEM rainfall relationship.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Agniv Sengupta, agnivs@umd.edu

Abstract

The northeast monsoon (NEM) brings the bulk of annual rainfall to southeastern peninsular India, Sri Lanka, and the neighboring Southeast Asian countries. This October–December monsoon is referred to as the winter monsoon in this region. In contrast, the southwest summer monsoon brings bountiful rainfall to the Indo-Gangetic Plain. The winter monsoon region is objectively demarcated from analysis of the timing of peak monthly rainfall. Because of the region’s complex terrain, in situ precipitation datasets are assessed using high-spatiotemporal-resolution Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, prior to their use in monsoon evolution, variability, and trend analyses. The Global Precipitation Climatology Center’s in situ analysis showed the least bias from TRMM.

El Niño–Southern Oscillation’s (ENSO) impact on NEM rainfall is shown to be significant, leading to stronger NEM rainfall over southeastern peninsular India and Sri Lanka but diminished rainfall over Thailand, Vietnam, and the Philippines. The impact varies subseasonally, being weak in October and strong in November. The positive anomalies over peninsular India are generated by anomalous anticyclonic flow centered over the Bay of Bengal, which is forced by an El Niño–related reduction in deep convection over the Maritime Continent.

The historical twentieth-century climate simulations informing the Intergovernmental Panel on Climate Change’s Fifth Assessment (IPCC-AR5) show varied deficiencies in the NEM rainfall distribution and a markedly weaker (and often unrealistic) ENSO–NEM rainfall relationship.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Agniv Sengupta, agnivs@umd.edu
Save
  • Akasaka, I., 2010: Interannual variations in seasonal march of rainfall in the Philippines. Int. J. Climatol., 30, 13011314, https://doi.org/10.1002/joc.1975; Corrigendum, 31, 1413, https://doi.org/10.1002/joc.2377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akasaka, I., W. Morishima, and T. Mikami, 2007: Seasonal march and its spatial difference of rainfall in the Philippines. Int. J. Climatol., 27, 715725, https://doi.org/10.1002/joc.1428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, https://doi.org/10.5194/essd-5-71-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M., and S. Nigam, 2009: Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations. Climate Dyn., 33, 10171032, https://doi.org/10.1007/s00382-008-0477-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., and S. Nigam, 2009: Residual diagnosis of diabatic heating from ERA-40 and NCEP reanalyses: Intercomparisons with TRMM. J. Climate, 22, 414428, https://doi.org/10.1175/2008JCLI2417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., J.-D. Tsay, M.-C. Yen, and J. Matsumoto, 2012: Interannual variation of the late fall rainfall in central Vietnam. J. Climate, 25, 392413, https://doi.org/10.1175/JCLI-D-11-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De, U. S., and R. K. Mukhopadhyay, 1999: The effect of ENSO/anti-ENSO on northeast monsoon rainfall. Mausam, 50, 343354.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhar, O. N., and P. R. Rakhecha, 1983: Foreshadowing northeast monsoon rainfall over Tamil Nadu, India. Mon. Wea. Rev., 111, 109112, https://doi.org/10.1175/1520-0493(1983)111<0109:FNMROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo, H., and A. Kitoh, 2016: Projecting changes of the Asian summer monsoon through the twenty-first century. The Monsoons and Climate Change: Observations and Modeling, L. M. V. Carvalho and C. Jones, Eds., Springer, 47–66.

    • Crossref
    • Export Citation
  • Endo, N., J. Matsumoto, and T. Lwin, 2009: Trends in precipitation extremes over Southeast Asia. SOLA, 5, 168171, https://doi.org/10.2151/sola.2009-043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866, http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter09_FINAL.pdf.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., and H. Wang, 2013: Oscillating relationship between the East Asian winter monsoon and ENSO. J. Climate, 26, 98199838, https://doi.org/10.1175/JCLI-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer Verlag, 3–22.

    • Crossref
    • Export Citation
  • Jayanthi, N., and S. Govindachari, 1999: El Niño and NE monsoon rainfall over Tamilnadu. Mausam, 50, 217218.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., K. R. Kumar, M. Rajeevan, and A. K. Sahai, 2007: On the recent strengthening of the relationship between ENSO and northeast monsoon rainfall over South Asia. Climate Dyn., 28, 649660, https://doi.org/10.1007/s00382-006-0210-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, J., 1990: The seasonal changes of wind fields in the global tropics. Geogr. Rev. Japan, 63B, 156178, https://doi.org/10.4157/grj1984b.63.156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, J., 1997: Seasonal transition of summer rainy season over Indochina and adjacent monsoon region. Adv. Atmos. Sci., 14, 231245, https://doi.org/10.1007/s00376-997-0022-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menon, A., A. Levermann, J. Schewe, J. Lehmann, and K. Frieler, 2013: Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst. Dyn., 4, 287300, https://doi.org/10.5194/esd-4-287-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., and H.-S. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS observations. J. Climate, 6, 657676, https://doi.org/10.1175/1520-0442(1993)006<0657:SOOAAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., and A. Ruiz-Barradas, 2006: Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP simulations: Varied representation. J. Climate, 19, 815837, https://doi.org/10.1175/JCLI3635.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., C. Chung, and E. DeWeaver, 2000: ENSO diabatic heating in ECMWF and NCEP–NCAR reanalyses, and NCAR CCM3 simulation. J. Climate, 13, 31523171, https://doi.org/10.1175/1520-0442(2000)013<3152:EDHIEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., N. P. Thomas, A. Ruiz-Barradas, and S. J. Weaver, 2017: Striking seasonality in the secular warming of the northern continents: Structure and mechanisms. J. Climate, 30, 65216541, https://doi.org/10.1175/JCLI-D-16-0757.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pant, G. B., and K. R. Kumar, 1997: Climates of South Asia. John Wiley and Sons, 320 pp.

  • Parvathi, V., I. Suresh, M. Lengaigne, T. Izumo, and J. Vialard, 2017: Robust projected weakening of winter monsoon winds over the Arabian Sea under climate change. Geophys. Res. Lett., 44, 98339843, https://doi.org/10.1002/2017GL075098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quenouille, M. H., 1952: Associated Measurements. Academic Press, 242 pp.

  • Rasmusson, E. M., and T. H. Carpenter, 1983: The relationship between eastern equatorial Pacific SSTs and rainfall over India and Sri Lanka. Mon. Wea. Rev., 111, 517528, https://doi.org/10.1175/1520-0493(1983)111<0517:TRBEEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-averaged atmospheric temperature time series. J. Geophys. Res., 105, 73377356, https://doi.org/10.1029/1999JD901105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, A., and M. Rajeevan, 2013: Uncertainty quantification and reliability analysis of CMIP5 projections for the Indian summer monsoon. Curr. Sci., 105, 16921703.

    • Search Google Scholar
    • Export Citation
  • Sharmila, S., S. Joseph, A. K. Sahai, S. Abhilash, and R. Chattopadhyay, 2015: Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models. Global Planet. Change, 124, 6278, https://doi.org/10.1016/j.gloplacha.2014.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. Nakano, and M. K. Yamamoto, 2017: Role of orography, diurnal cycle, and intraseasonal oscillation in summer monsoon rainfall over the Western Ghats and Myanmar coast. J. Climate, 30, 93659381, https://doi.org/10.1175/JCLI-D-16-0858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siew, J. H., F. T. Tangang, and L. Juneng, 2014: Evaluation of CMIP5 coupled atmosphere–ocean general circulation models and projection of the Southeast Asian winter monsoon in the 21st century. Int. J. Climatol., 34, 28722884, https://doi.org/10.1002/joc.3880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., 1980: Some aspects of the large scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters. Proc. Indian Acad. Sci., Earth Planet. Sci., 89, 179195, https://doi.org/10.1007/BF02913749.

    • Search Google Scholar
    • Export Citation
  • Singh, N., and N. A. Sontakke, 1999: On the variability and prediction of the rainfall in the post-monsoon season over India. Int. J. Climatol., 19, 309339, https://rmets.onlinelibrary.wiley.com/doi/10.1002/%28SICI%291097-0088%2819990315%2919%3A3%3C309%3A%3AAID-JOC361%3E3.0.CO%3B2-%23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sooraj, K. P., P. Terray, and M. Mujumdar, 2015: Global warming and the weakening of the Asian summer monsoon circulation: Assessments from the CMIP5 models. Climate Dyn., 45, 233252, https://doi.org/10.1007/s00382-014-2257-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sridharan, S., and A. Muthuswamy, 1990: Northeast monsoon rainfall in relation to El-Niño, QBO and Atlantic hurricane frequency. Vayu Mandal, 20, 104111.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, V., and K. Ramamurthy, 1973: Forecasting manual, part IV: Comprehensive articles on selected topics—Northeast monsoon. India Meteorological Department Field Meteorological Unit Rep. IV-18.4, 132 pp., http://imdpune.gov.in/Weather/Forecasting_Mannuals/IMD_IV-18.4.pdf.

  • Sun, Y., S. C. Clemens, C. Morrill, X. Lin, X. Wang, and Z. An, 2011: Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat. Geosci., 5, 4649, https://doi.org/10.1038/ngeo1326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suppiah, R., 1997: Extremes of the Southern Oscillation phenomenon and the rainfall of Sri Lanka. Int. J. Climatol., 17, 87101, https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<87::AID-JOC95>3.0.CO;2-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villafuerte, M. Q., II, J. Matsumoto, I. Akasaka, H. G. Takahashi, H. Kubota, and T. A. Cinco, 2014: Long-term trends and variability of rainfall extremes in the Philippines. Atmos. Res., 137, 113, https://doi.org/10.1016/j.atmosres.2013.09.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, G. T., 1923: Correlation in seasonal variations of weather, VIII: A preliminary study of world weather. Memoirs of the India Meteorological Department, 24 (4), 75131.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 32523265, https://doi.org/10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and S. He, 2012: Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chin. Sci. Bull., 57, 35353540, https://doi.org/10.1007/s11434-012-5285-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, and R. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, https://doi.org/10.1029/2008GL035287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F.-F. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29, 1478, https://doi.org/10.1029/2001GL014318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, https://doi.org/10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., X. Wang, T. J. Zhou, C. Li, and J. C. L. Chan, 2007: Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteor. Atmos. Phys., 98, 283293, https://doi.org/10.1007/s00703-007-0263-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zubair, L., and C. F. Ropelewski, 2006: The strengthening relationship between ENSO and northeast monsoon rainfall over Sri Lanka and southern India. J. Climate, 19, 15671575, https://doi.org/10.1175/JCLI3670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2119 422 26
PDF Downloads 1488 239 12