On the Challenge for ENSO Cycle Prediction: An Example from NCEP Climate Forecast System, Version 2

Zeng-Zhen Hu Climate Prediction Center, NCEP/NWS/NOAA, College Park, Maryland

Search for other papers by Zeng-Zhen Hu in
Current site
Google Scholar
PubMed
Close
,
Arun Kumar Climate Prediction Center, NCEP/NWS/NOAA, College Park, Maryland

Search for other papers by Arun Kumar in
Current site
Google Scholar
PubMed
Close
,
Jieshun Zhu Climate Prediction Center, NCEP/NWS/NOAA, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Jieshun Zhu in
Current site
Google Scholar
PubMed
Close
,
Peitao Peng Climate Prediction Center, NCEP/NWS/NOAA, College Park, Maryland

Search for other papers by Peitao Peng in
Current site
Google Scholar
PubMed
Close
, and
Bohua Huang Center for Ocean–Land–Atmosphere Studies, and Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia

Search for other papers by Bohua Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work demonstrates the influence of the initial amplitude of the sea surface temperature anomaly (SSTA) associated with El Niño–Southern Oscillation (ENSO) following its evolutionary phase on the forecast skill of ENSO in retrospective predictions of the Climate Forecast System, version 2. It is noted that the prediction skill varies with the phase of the ENSO cycle. The averaged skill (linear correlation) of Niño-3.4 index is in a range of 0.15–0.55 for the amplitude of Niño-3.4 index smaller than 0.5°C (e.g., initial phase or neutral condition of ENSO), and 0.74–0.93 for the amplitude larger than 0.5°C (e.g., mature condition of ENSO) for 0–6-month lead predictions. The dependence of the prediction skills of ENSO on its phase is linked to the variation of signal-to-noise ratio (SNR). This variation is found to be mainly due to the changes in the amplitude of the signal (prediction of the ensemble mean) during different phases of the ENSO cycle, as the noise (forecast spread among the ensemble members), both in the Niño-3.4 region and the whole Pacific, does not depend much on the Niño-3.4 amplitude. It is also shown that the spatial pattern of unpredictable noise in the Pacific is similar to the predictable signal. These results imply that skillful prediction of the ENSO cycle, either at the initial time of an event or during the transition phase of the ENSO cycle, when the anomaly signal is weak and the SNR is small, is an inherent challenge.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0285.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zeng-Zhen Hu, zeng-zhen.hu@noaa.gov

Abstract

This work demonstrates the influence of the initial amplitude of the sea surface temperature anomaly (SSTA) associated with El Niño–Southern Oscillation (ENSO) following its evolutionary phase on the forecast skill of ENSO in retrospective predictions of the Climate Forecast System, version 2. It is noted that the prediction skill varies with the phase of the ENSO cycle. The averaged skill (linear correlation) of Niño-3.4 index is in a range of 0.15–0.55 for the amplitude of Niño-3.4 index smaller than 0.5°C (e.g., initial phase or neutral condition of ENSO), and 0.74–0.93 for the amplitude larger than 0.5°C (e.g., mature condition of ENSO) for 0–6-month lead predictions. The dependence of the prediction skills of ENSO on its phase is linked to the variation of signal-to-noise ratio (SNR). This variation is found to be mainly due to the changes in the amplitude of the signal (prediction of the ensemble mean) during different phases of the ENSO cycle, as the noise (forecast spread among the ensemble members), both in the Niño-3.4 region and the whole Pacific, does not depend much on the Niño-3.4 amplitude. It is also shown that the spatial pattern of unpredictable noise in the Pacific is similar to the predictable signal. These results imply that skillful prediction of the ENSO cycle, either at the initial time of an event or during the transition phase of the ENSO cycle, when the anomaly signal is weak and the SNR is small, is an inherent challenge.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0285.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zeng-Zhen Hu, zeng-zhen.hu@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 576.45 KB)
Save
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, https://doi.org/10.1175/BAMS-D-11-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. J. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733736, https://doi.org/10.1038/nature02439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glantz, M. H., 2000: Currents of Change: Impacts of El Niño and La Niña on Climate and Society. Cambridge University Press, 266 pp.

  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., and B. Huang, 2007: The predictive skill and the most predictable pattern in the tropical Atlantic: The effect of ENSO. Mon. Wea. Rev., 135, 17861806, https://doi.org/10.1175/MWR3393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, W. Wang, J. Zhu, and C. Wen, 2013a: Prediction skill of monthly SST in the North Atlantic Ocean in NCEP Climate Forecast System version 2. Climate Dyn., 40, 27452759, https://doi.org/10.1007/s00382-012-1431-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, H.-L. Ren, H. Wang, M. L’Heureux, and F.-F. Jin, 2013b: Weakened interannual variability in the tropical Pacific Ocean since 2000. J. Climate, 26, 26012613, https://doi.org/10.1175/JCLI-D-12-00265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, Y. Xue, and B. Jha, 2014a: Why were some La Niñas followed by another La Niña? Climate Dyn., 42, 10291042, https://doi.org/10.1007/s00382-013-1917-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, and Y. Guan, 2014b: Prediction skill of North Pacific variability in NCEP Climate Forecast System version 2: Impact of ENSO and beyond. J. Climate, 27, 42634272, https://doi.org/10.1175/JCLI-D-13-00633.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, and H.-L. Ren, 2017a: Interdecadal variations of ENSO around 1999/2000. J. Meteor. Res., 31, 7381, https://doi.org/10.1007/s13351-017-6074-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, R.-H. Zhang, and F.-F. Jin, 2017b: Asymmetric evolution of El Niño and La Niña: The recharge/discharge processes and role of the off-equatorial sea surface height anomaly. Climate Dyn., 49, 27372748, https://doi.org/10.1007/s00382-016-3498-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jha, B., and A. Kumar, 2009: A comparative analysis of change in the first and second moment of the PDF of seasonal means with ENSO SSTs. J. Climate, 22, 14121423, https://doi.org/10.1175/2008JCLI2495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jha, B., A. Kumar and Z.-Z. Hu, 2018: An update on the estimate of predictability of seasonal mean atmospheric variability using North American Multi-Model Ensemble. Climate Dyn., https://doi.org/10.1007/s00382-016-3217-1.

    • Crossref
    • Export Citation
  • Jiang, X., S. Yang, Y. Li, A. Kumar, X. Liu, Z. Zuo, and B. Jha, 2013a: Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP Climate Forecast System version 2. J. Climate, 26, 37083727, https://doi.org/10.1175/JCLI-D-12-00437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Yang, Y. Li, A. Kumar, W. Wang, and Z. Gao, 2013b: Dynamical prediction of the East Asian winter monsoon by the NCEP Climate Forecast System. J. Geophys. Res. Atmos., 118, 13121328, https://doi.org/10.1002/jgrd.50193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664, https://doi.org/10.1007/s00382-008-0397-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.

  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere winter. Climate Dyn., 39, 29572973, https://doi.org/10.1007/s00382-012-1364-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1998: Annual cycle of Pacific–North American seasonal predictability associated with different phases of ENSO. J. Climate, 11, 32953308, https://doi.org/10.1175/1520-0442(1998)011<3295:ACOPNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 2000: Analysis of a conceptual model of seasonal climate variability and implications for seasonal prediction. Bull. Amer. Meteor. Soc., 81, 255264, https://doi.org/10.1175/1520-0477(2000)081<0255:AOACMO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Z.-Z. Hu, 2014: How variable is the uncertainty in ENSO sea surface temperature prediction? J. Climate, 27, 27792788, https://doi.org/10.1175/JCLI-D-13-00576.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. Chen, 2015: Inherent predictability, requirements on ensemble size, and complementarity. Mon. Wea. Rev., 143, 31923203, https://doi.org/10.1175/MWR-D-15-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., A. G. Barnston, P. Peng, M. P. Hoerling, and L. Goddard, 2000: Changes in the spread of the variability of the seasonal mean atmospheric states associated with ENSO. J. Climate, 13, 31393151, https://doi.org/10.1175/1520-0442(2000)013<3139:CITSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, L. Zhang, W. Wang, Y. Xue, C. Wen, L. Marx, and B. Huang, 2012: An analysis of the nonstationarity in the bias of sea surface temperature forecasts for the NCEP Climate Forecast System (CFS) version 2. Mon. Wea. Rev., 140, 30033016, https://doi.org/10.1175/MWR-D-11-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., Z.-Z. Hu, B. Jha, and P. Peng, 2017: Estimating ENSO predictability based on multi-model hindcasts. Climate Dyn., 48, 3951, https://doi.org/10.1007/s00382-016-3060-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. National Academies Press, 192 pp.

  • Peng, P., and A. Kumar, 2005: A large ensemble analysis of the influence of tropical SSTs on seasonal atmospheric variability. J. Climate, 18, 10681085, https://doi.org/10.1175/JCLI-3314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, P., A. Kumar, and W. Wang, 2011: An analysis of seasonal predictability in coupled model forecasts. Climate Dyn., 36, 637648, https://doi.org/10.1007/s00382-009-0711-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, P., A. G. Barnston, and A. Kumar, 2013: A comparison of skill between two versions of the NCEP Climate Forecast System (CFS) and CPC’s operational short-lead seasonal outlooks. Wea. Forecasting, 28, 445462, https://doi.org/10.1175/WAF-D-12-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramu, D. A., and Coauthors, 2016: Indian summer monsoon rainfall simulation and prediction skill in the CFSv2 coupled model: Impact of atmospheric horizontal resolution. J. Geophys. Res. Atmos., 121, 22052221, https://doi.org/10.1002/2015JD024629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarachik, E. S., and M. A. Cane, 2010: The El Niño–Southern Oscillation Phenomenon. Cambridge University Press, 384 pp.

    • Crossref
    • Export Citation
  • Tang, Y., and Z. Deng, 2011: Bred vector and ENSO predictability in a hybrid coupled model during the period 1881–2000. J. Climate, 24, 298314, https://doi.org/10.1175/2010JCLI3491.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., R. Kleeman, and A. M. Moore, 2004: A simple method for estimating variations in the predictability of ENSO. Geophys. Res. Lett., 31, L17205, https://doi.org/10.1029/2004GL020673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., R. Kleeman, and A. M. Moore, 2005: Reliability of ENSO dynamical predictions. J. Atmos. Sci., 62, 17701791, https://doi.org/10.1175/JAS3445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., H. Lin, and A. M. Moore, 2008: Measuring the potential predictability of ensemble climate predictions. J. Geophys. Res., 113, D04108, https://doi.org/10.1029/2007JD008804.

    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, and A. Kumar, 2010: An assessment of the CFS real-time seasonal forecasts. Wea. Forecasting, 25, 950969, https://doi.org/10.1175/2010WAF2222345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, C., Y. Xue, and A. Kumar, 2012: Seasonal prediction of North Pacific SSTs and PDO in the NCEP CFS hindcasts. J. Climate, 25, 56895710, https://doi.org/10.1175/JCLI-D-11-00556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., B. Huang, Z.-Z. Hu, A. Kumar, C. Wen, D. Behringer, and S. Nadiga, 2011: An assessment of oceanic variability in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 25112539, https://doi.org/10.1007/s00382-010-0954-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. Chen, A. Kumar, Z.-Z. Hu, and W. Wang, 2013: Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System version 2. J. Climate, 26, 53585378, https://doi.org/10.1175/JCLI-D-12-00600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., and C. Gao, 2016: The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015–2016 El Niño event. Sci. Bull., 61, 10611070, https://doi.org/10.1007/s11434-016-1064-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., F. Zheng, J. Zhu, and Z. Wang, 2013: A successful real-time forecast of the 2010-11 La Niña event. Sci. Rep., 3, 1108, https://doi.org/10.1038/srep01108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Z., Z.-Z. Hu, and M. L’Heureux, 2016: Predictable components of ENSO evolution in real-time multi-model predictions. Sci. Rep., 6, 35909, https://doi.org/10.1038/srep35909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, L. Marx, J. L. Kinter III, M. A. Balmaseda, R.-H. Zhang, and Z.-Z. Hu, 2012: Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys. Res. Lett., 39, L09602, https://doi.org/10.1029/2012GL051503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, Z.-Z. Hu, J. L. Kinter III, and L. Marx, 2013: Predicting US summer precipitation using NCEP Climate Forecast System version 2 initialized by multiple ocean analyses. Climate Dyn., 41, 19411954, https://doi.org/10.1007/s00382-013-1785-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, Z., S. Yang, Z.-Z. Hu, R. Zhang, W. Wang, B. Huang, and F. Wang, 2013: Predictable patterns and predictive skills of monsoon precipitation in Northern Hemisphere summer in NCEP CFSv2 reforecasts. Climate Dyn., 40, 30713088, https://doi.org/10.1007/s00382-013-1772-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 662 178 7
PDF Downloads 475 75 2