Cloud Phase and Relative Humidity Distributions over the Southern Ocean in Austral Summer Based on In Situ Observations and CAM5 Simulations

John J. D’Alessandro Department of Meteorology and Climate Science, San Jose State University, San Jose, California

Search for other papers by John J. D’Alessandro in
Current site
Google Scholar
PubMed
Close
,
Minghui Diao Department of Meteorology and Climate Science, San Jose State University, San Jose, California

Search for other papers by Minghui Diao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0324-0897
,
Chenglai Wu Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming, and International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Chenglai Wu in
Current site
Google Scholar
PubMed
Close
,
Xiaohong Liu Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Xiaohong Liu in
Current site
Google Scholar
PubMed
Close
,
Jorgen B. Jensen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jorgen B. Jensen in
Current site
Google Scholar
PubMed
Close
, and
Britton B. Stephens National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Britton B. Stephens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cloud phase and relative humidity (RH) distributions at −67° to 0°C over the Southern Ocean during austral summer are compared between in situ airborne observations and global climate simulations. A scale-aware comparison is conducted using horizontally averaged observations from 0.1 to 50 km. Cloud phase frequencies, RH distributions, and liquid mass fraction are found to be less affected by horizontal resolutions than liquid and ice water content (LWC and IWC, respectively), liquid and ice number concentrations (Ncliq and Ncice, respectively), and ice supersaturation (ISS) frequency. At −10° to 0°C, observations show 27%–34% and 17%–37% of liquid and mixed phases, while simulations show 60%–70% and 3%–4%, respectively. Simulations overestimate (underestimate) LWC and Ncliq in liquid (mixed) phase, overestimate Ncice in mixed phase, underestimate IWC in ice and mixed phases, and underestimate (overestimate) liquid mass fraction below (above) −5°C, indicating that observational constraints are needed for different cloud phases. RH frequently occurs at liquid saturation in liquid and mixed phases for all datasets, yet the observed RH in ice phase can deviate from liquid saturation by up to 20%–40% at −20° to 0°C, indicating that the model assumption of liquid saturation for coexisting ice and liquid is inaccurate for low liquid mass fractions (<0.1). Simulations lack RH variability for partial cloud fractions (0.1–0.9) and underestimate (overestimate) ISS frequency for cloud fraction <0.1 (≥0.6), implying that improving RH subgrid-scale parameterizations may be a viable path to account for small-scale processes that affect RH and cloud phase heterogeneities. Two sets of simulations (nudged and free-running) show very similar results (except for ISS frequency) regardless of sample sizes, corroborating the statistical robustness of the model–observation comparisons.

Current affiliation: Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology, University of Oklahoma, Norman, Oklahoma.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0232.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Minghui Diao, minghui.diao@sjsu.edu

Abstract

Cloud phase and relative humidity (RH) distributions at −67° to 0°C over the Southern Ocean during austral summer are compared between in situ airborne observations and global climate simulations. A scale-aware comparison is conducted using horizontally averaged observations from 0.1 to 50 km. Cloud phase frequencies, RH distributions, and liquid mass fraction are found to be less affected by horizontal resolutions than liquid and ice water content (LWC and IWC, respectively), liquid and ice number concentrations (Ncliq and Ncice, respectively), and ice supersaturation (ISS) frequency. At −10° to 0°C, observations show 27%–34% and 17%–37% of liquid and mixed phases, while simulations show 60%–70% and 3%–4%, respectively. Simulations overestimate (underestimate) LWC and Ncliq in liquid (mixed) phase, overestimate Ncice in mixed phase, underestimate IWC in ice and mixed phases, and underestimate (overestimate) liquid mass fraction below (above) −5°C, indicating that observational constraints are needed for different cloud phases. RH frequently occurs at liquid saturation in liquid and mixed phases for all datasets, yet the observed RH in ice phase can deviate from liquid saturation by up to 20%–40% at −20° to 0°C, indicating that the model assumption of liquid saturation for coexisting ice and liquid is inaccurate for low liquid mass fractions (<0.1). Simulations lack RH variability for partial cloud fractions (0.1–0.9) and underestimate (overestimate) ISS frequency for cloud fraction <0.1 (≥0.6), implying that improving RH subgrid-scale parameterizations may be a viable path to account for small-scale processes that affect RH and cloud phase heterogeneities. Two sets of simulations (nudged and free-running) show very similar results (except for ISS frequency) regardless of sample sizes, corroborating the statistical robustness of the model–observation comparisons.

Current affiliation: Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology, University of Oklahoma, Norman, Oklahoma.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0232.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Minghui Diao, minghui.diao@sjsu.edu

Supplementary Materials

    • Supplemental Materials (PDF 1011.87 KB)
Save
  • Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res., 105, 68376844, https://doi.org/10.1029/1999JD901161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahn, E., Y. Huang, T. H. Chubb, D. Baumgardner, P. Isaac, M. de Hoog, S. T. Siems, and M. J. Manton, 2017: In situ observations of wintertime low-altitude clouds over the Southern Ocean. Quart. J. Roy. Meteor. Soc., 143, 13811394, https://doi.org/10.1002/qj.3011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, https://doi.org/10.1175/JCLI-3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., 9.1–9.23, doi:10.1175/AMSMONOGRAPHS-D-16-0011.1.

    • Crossref
    • Export Citation
  • Bergeron, T., 1928: Über die dreidimensional verknüpfende Wetteranalyse. Geophys. Norv., 5, 1111.

  • Bergeron, T., 1935: On the physics of clouds and precipitation. Proces Verbaux l’Association Météorologie, International Union of Geodesy and Geophysics, 156–178.

  • Biter, C. J., J. E. Dye, D. Huffman, and W. D. King, 1987: The drop-size response of the CSIRO liquid water probe. J. Atmos. Oceanic Technol., 4, 359367, https://doi.org/10.1175/1520-0426(1987)004<0359:TDSROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., K. D. Williams, P. R. Field, and A. P. Lock, 2012: The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office Model: The role of midlatitude cyclone clouds. J. Climate, 25, 74677486, https://doi.org/10.1175/JCLI-D-11-00702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, https://doi.org/10.1175/JCLI-D-13-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., P. G. Hill, K. Furtado, K. D. Williams, P. R. Field, J. C. Manners, P. Hyder, and S. Kato, 2016: Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Climate, 29, 42134228, https://doi.org/10.1175/JCLI-D-15-0564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett., 41, 32443250, https://doi.org/10.1002/2014GL060043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., and H. Chepfer, 2013: Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP. J. Geophys. Res. Atmos., 118, 79227937, https://doi.org/10.1002/jgrd.50376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., D. E. Waliser, X. Jiang, and J.-L. F. Li, 2015: Multimodel evaluation of cloud phase transition using satellite and reanalysis data. J. Geophys. Res., 120, 78717892. https://doi.org/10.1002/2014JD022932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., and Coauthors, 2016: Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO. J. Geophys. Res., 121, 57885808, https://doi.org/10.1002/2015JD024334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, H.-M., S. L. Nasiri, and P. Yang, 2009: Application of CALIOP measurements to the evaluation of cloud phase derived from MODIS infrared channels. J. Appl. Meteor. Climatol., 48, 21692180, https://doi.org/10.1175/2009JAMC2238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chubb, T. H., J. B. Jensen, S. T. Siems, and M. J. Manton, 2013: In situ observations of supercooled liquid clouds over the Southern Ocean during the HIAPER Pole-to-Pole Observation campaigns. Geophys. Res. Lett., 40, 52805285, https://doi.org/10.1002/grl.50986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., and C. Borel, 2004: Mixed phase cloud water/ice structure from high spatial resolution satellite data. Geophys. Res. Lett., 31, L14104, https://doi.org/10.1029/2004GL020428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., S. Robinson, M. K. Dubey, M. D. King, Q. Fu, and W. B. Clodius, 2006: Comparison of near-infrared and thermal infrared cloud phase detections. J. Geophys. Res., 111, D20203, https://doi.org/10.1029/2006JD007140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, A., and Coauthors, 2017: Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime. Atmos. Chem. Phys., 17, 12 21912 238, https://doi.org/10.5194/acp-17-12219-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 16581680, https://doi.org/10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Alessandro, J., 2018: Cloud microphysical properties based on airborne in situ observations and evaluation of a weather forecasting model and a global climate model. M.S. thesis, Dept. of Meteorology and Climate Science, San Jose State University, 78 pp., https://scholarworks.sjsu.edu/etd_theses/4935.

  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, https://doi.org/10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diao, M., L. Jumbam, J. Sheffield, E. F. Wood, and M. A. Zondlo, 2013: Validation of AIRS/AMSU-A water vapor and temperature data with in situ aircraft observations from the surface to UT/LS from 87°N–67°S. J. Geophys. Res. Atmos., 118, 68166836, https://doi.org/10.1002/jgrd.50483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diao, M., M. A. Zondlo, A. J. Heymsfield, L. M. Avallone, M. E. Paige, S. P. Beaton, T. Campos, and D. C. Rogers, 2014: Cloud-scale ice-supersaturated regions spatially correlate with high water vapor heterogeneities. Atmos. Chem. Phys., 14, 26392656, https://doi.org/10.5194/acp-14-2639-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, https://doi.org/10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., S. Ghan, M. Ovchinnikov, X. Liu, P. J. Rasch, and A. Korolev, 2011: Representation of Arctic mixed-phase clouds and the Wegener–Bergeron–Findeisen process in climate models: Perspectives from a cloud-resolving study. J. Geophys. Res., 116, D00T07, https://doi.org/10.1029/2010JD015375.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, P. H. Kaye, E. Hirst, and R. Greenaway, 2004: Simultaneous radar and aircraft observations of mixed-phase cloud at the 100 m scale. Quart. J. Roy. Meteor. Soc., 130, 18771904, https://doi.org/10.1256/qj.03.102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. A. Hill, K. Furtado, and A. Korolev, 2014: Mixed-phase clouds in a turbulent environment. Part 2: Analytic treatment. Quart. J. Roy. Meteor. Soc., 140, 870880, https://doi.org/10.1002/qj.2175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1938: Kolloid-meteorologische Vorgänge bei Neiderschlags-bildung. Meteor. Z., 55, 121133.

  • Findeisen, W., 1940: On the origin of thunderstorm electricity. Meteor. Z., 57, 201215.

  • Forbes, R. M., and M. Ahlgrimm, 2014: On the representation of high-latitude boundary layer mixed-phase cloud in the ECMWF global model. Mon. Wea. Rev., 142, 34253445, https://doi.org/10.1175/MWR-D-13-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, W. R., and J. E. Kay, 2018: The influence of extratropical cloud phase and amount feedbacks on climate sensitivity. Climate Dyn., 50, 30973116, https://doi.org/10.1007/s00382-017-3796-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and S. Hollars, 2004: Testing mixed-phase cloud water vapor parameterizations with SHEBA/FIRE–ACE observations. J. Atmos. Sci., 61, 20832091, https://doi.org/10.1175/1520-0469(2004)061<2083:TMCWVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., and Coauthors, 2006: Microphysical and optical properties of midlatitude cirrus clouds observed in the Southern Hemisphere during INCA. Quart. J. Roy. Meteor. Soc., 132, 27192748, https://doi.org/10.1256/qj.05.162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28, 12681287, https://doi.org/10.1175/JCLI-D-14-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and S. C. Sherwood, 2016: Processes responsible for cloud feedback. Curr. Climate Change Rep., 2, 179189, https://doi.org/10.1007/s40641-016-0052-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., E. J. Fetzer, A. Eldering, and F. W. Irion, 2006: The global distribution of supersaturation in the upper troposphere from the Atmospheric Infrared Sounder. J. Climate, 19, 60896103, https://doi.org/10.1175/JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, https://doi.org/10.1029/2009JD013797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and S. Gratch, 1946: Low-pressure properties of water from −160° to 212°F. Trans. Amer. Soc. Heat Air-Cond. Eng., 52, 95122.

  • Goloub, P., M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument. J. Geophys. Res., 105, 14 74714 759, https://doi.org/10.1029/1999JD901183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govekar, P. D., C. Jakob, and J. Catto, 2014: The relationship between clouds and dynamics in Southern Hemisphere extratropical cyclones in the real world and a climate model. J. Geophys. Res., 119, 66096628, https://doi.org/10.1002/2013JD020699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. A., P. R. Field, K. Furtado, A. Korolev, and B. J. Shipway, 2014: Mixed-phase clouds in a turbulent environment. Part 1: Large-eddy simulation experiments. Quart. J. Roy. Meteor. Soc., 140, 855869, https://doi.org/10.1002/qj.2177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, https://doi.org/10.1175/JCLI3570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309, https://doi.org/10.1175/2009JTECHA1280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., S. Rodier, K. Xu, W. Sun, J. Huang, B. Lin, P. Zhai, and D. Josset, 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, D00H34, https://doi.org/10.1029/2009JD012384.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, L. B. Hande, and J. M. Haynes, 2012a: The Structure of low-altitude clouds over the Southern Ocean as seen by CloudSat. J. Climate, 25, 25352546, https://doi.org/10.1175/JCLI-D-11-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, A. Protat, and J. Delanoë, 2012b: A study on the low-altitude clouds over the Southern Ocean using the DARDAR-MASK. J. Geophys. Res., 117, D18204, https://doi.org/10.1029/2012JD017800.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, and G. Thompson, 2014: An evaluation of WRF simulations of clouds over the Southern Ocean with A-Train observations. Mon. Wea. Rev., 142, 647667, https://doi.org/10.1175/MWR-D-13-00128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., C. N. Franklin, S. T. Siems, M. J. Manton, T. Chubb, A. Lock, S. Alexander, and A. Klekociuk, 2015: Evaluation of boundary-layer cloud forecasts over the Southern Ocean in a limited-area numerical weather prediction system using in situ, space-borne and ground-based observations. Quart. J. Roy. Meteor. Soc., 141, 22592276, https://doi.org/10.1002/qj.2519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., T. Chubb, D. Baumgardner, M. DeHoog, S. T. Siems, and M. J. Manton, 2017: Evidence for secondary ice production in Southern Ocean open cellular convection. Quart. J. Roy. Meteor. Soc., 143, 16851703, https://doi.org/10.1002/qj.3041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., S. Lee, P. B. Krummel, J. Katzfey, and D. Gogoasa, 2000: Precipitation in marine cumulus and stratocumulus: Part I: Thermodynamic and dynamic observations of closed cell circulations and cumulus bands. Atmos. Res., 54, 117155, https://doi.org/10.1016/S0169-8095(00)00040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., A. Gettelman, E. J. Fetzer, A. Eldering, and C. K. Liang, 2009: Cloudy and clear-sky relative humidity in the upper troposphere observed by the A-Train. J. Geophys. Res., 114, D00H02, https://doi.org/10.1029/2009JD011738.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., S. L. Nasiri, M. M. Schreier, and B. A. Baum, 2011: Impacts of subpixel cloud heterogeneity on infrared thermodynamic phase assessment. J. Geophys. Res., 116, D20201, https://doi.org/10.1029/2011JD015774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 51905207, https://doi.org/10.1175/JCLI-D-11-00469.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2016a: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, https://doi.org/10.1175/JCLI-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., L. Bourdages, N. B. Miller, A. Morrison, V. Yettella, H. Chepfer, and B. Eaton, 2016b: Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations. J. Geophys. Res., 121, 41624176, https://doi.org/10.1002/2015JD024699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., D. A. Parkin, and R. J. Handsworth, 1978: A hot-wire liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17, 18091813, https://doi.org/10.1175/1520-0450(1978)017<1809:AHWLWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komurcu, M., and Coauthors, 2014: Intercomparison of the cloud water phase among global climate models. J. Geophys. Res. Atmos., 119, 33723400, https://doi.org/10.1002/2013JD021119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375, https://doi.org/10.1175/JAS4035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., 2008: Rates of phase transformations in mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 134, 595608, https://doi.org/10.1002/qj.230.

  • Korolev, A., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974, https://doi.org/10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. A. Isaac, 2006: Relative humidity in liquid, mixed-phase, and ice clouds. J. Atmos. Sci., 63, 28652880, https://doi.org/10.1175/JAS3784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and P. R. Field, 2008: The effect of dynamics on mixed-phase clouds: theoretical considerations. J. Atmos. Sci., 65, 6686, https://doi.org/10.1175/2007JAS2355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. A. Isaac, 2008: The effect of spatial averaging on the relative humidity and phase composition of clouds. 2008 Int. Conf. on Clouds and Precipitation, Cancun, Mexico, ICCP, http://cabernet.atmosfcu.unam.mx/ICCP-2008/abstracts/Program_on_line/Poster_01/Korolev&Isaac_extended.pdf.

  • Korolev, A., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 3965, https://doi.org/10.1256/qj.01.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and Coauthors, 2017: Mixed-phase clouds: Progress and challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., 5.1–5.50, https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1.

    • Crossref
    • Export Citation
  • Krämer, M., and Coauthors, 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 35053522, https://doi.org/10.5194/acp-9-3505-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2012: CAM-chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci. Model Dev., 5, 369411, https://doi.org/10.5194/gmd-5-369-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamquin, N., C. J. Stubenrauch, K. Gierens, U. Burkhardt, and H. Smit, 2012: A global climatology of upper-tropospheric ice supersaturation occurrence inferred from the Atmospheric Infrared Sounder calibrated by MOZAIC. Atmos. Chem. Phys., 12, 381405, https://doi.org/10.5194/acp-12-381-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and A. Gettelman, 2014: Impact of Antarctic mixed-phase clouds on climate. Proc. Natl. Acad. Sci. USA, 111, 18 15618 161, https://doi.org/10.1073/pnas.1418197111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., D. E. Waliser, G. Stephens, S. Lee, T. L’Ecuyer, S. Kato, N. Loeb, and H.-Y. Ma, 2013: Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J. Geophys. Res. Atmos., 118, 81668184, https://doi.org/10.1002/jgrd.50378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.-X., and H. Le Treut, 1992: Cloud-radiation feedbacks in a general circulation model and their dependence on cloud modelling assumptions. Climate Dyn., 7, 133139, https://doi.org/10.1007/BF00211155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and J. E. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14, 499514, https://doi.org/10.1127/0941-2948/2005/0059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., J. E. Penner, S. J. Ghan, and M. Wang, 2007: Inclusion of ice microphysics in the NCAR Community Atmospheric Model version 3 (CAM3). J. Climate, 20, 45264547, https://doi.org/10.1175/JCLI4264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2011: Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations. J. Geophys. Res., 116, D00T11, https://doi.org/10.1029/2011JD015889.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2012: Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709739, https://doi.org/10.5194/gmd-5-709-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matus, A. V., and T. S. L’Ecuyer, 2017: The role of cloud phase in Earth’s radiation budget. J. Geophys. Res. Atmos., 122, 25592578, https://doi.org/10.1002/2016JD025951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, and D. P. Grosvenor, 2014a: Observed Southern Ocean cloud properties and shortwave reflection. Part I: Calculation of SW flux from observed cloud properties. J. Climate, 27, 88368857, https://doi.org/10.1175/JCLI-D-14-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, and D. P. Grosvenor, 2014b: Observed Southern Ocean cloud properties and shortwave reflection. Part II: Phase changes and low cloud feedback. J. Climate, 27, 88588868, https://doi.org/10.1175/JCLI-D-14-00288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., I. Tan, D. L. Hartmann, M. D. Zelinka, and T. Storelvmo, 2016: On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs. J. Adv. Model. Earth Syst., 8, 650668, https://doi.org/10.1002/2015MS000589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, A. Fridlind, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations. J. Geophys. Res., 112, D24201, https://doi.org/10.1029/2007JD008633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., C. A. Senior, and W. J. Ingram, 1989: CO2 and climate: A missing feedback? Nature, 341, 132134, https://doi.org/10.1038/341132a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. E., S. T. Siems, M. J. Manton, and A. Nazarov, 2010: A modeling case study of mixed-phase clouds over the Southern Ocean and Tasmania. Mon. Wea. Rev., 138, 839862, </