Influences of Tropical Indian and Pacific Oceans on the Interannual Variations of Precipitation in the Early and Late Rainy Seasons in South China

Chaoxia Yuan Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Chaoxia Yuan in
Current site
Google Scholar
PubMed
Close
,
Junqi Liu Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Junqi Liu in
Current site
Google Scholar
PubMed
Close
,
Jing-Jia Luo Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jing-Jia Luo in
Current site
Google Scholar
PubMed
Close
, and
Zhaoyong Guan Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Zhaoyong Guan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Because of the seasonal northward migration of the East Asian summer monsoon, the mean-state atmospheric circulation in South China (SC) is remarkably different between the early (May–June) and late (July–August) rainy seasons. This study presents distinct teleconnections between the SC precipitation in the two periods and the sea surface temperatures (SSTs) in the tropical oceans. In the early rainy season when the major monsoon rain belt is located in SC, the increased local precipitation is related to the tropical Indian Ocean Basin warming. The basin warming induces an anomalous anticyclone in the South China Sea–western North Pacific (SCS-WNP). The related southwesterly anomalies transport more moisture to SC and lead to more moisture convergence and precipitation there. In the late rainy season when the major monsoon rain belt migrates northward to the Yangtze River valley, the precipitation increase in SC can be caused by the dipole SST anomalies in the tropical Pacific with the cold anomalies near the Maritime Continent and warm ones near the date line. The dipole SST anomalies generate an anomalous cyclone in the WNP with its center more northward than that of the anomalous anticyclone in the early rainy season. The related northeasterly anomalies along its northwestern flank reduce the climatological northward transport of moisture flux out of SC, and increase the moisture convergence and precipitation there. The distinct teleconnections between the SC precipitation and the tropical SSTs in the early and late rainy seasons can be well reproduced in the sensitivity experiments by an atmospheric general circulation model.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chaoxia Yuan, chaoxia.yuan@nuist.edu.cn

Abstract

Because of the seasonal northward migration of the East Asian summer monsoon, the mean-state atmospheric circulation in South China (SC) is remarkably different between the early (May–June) and late (July–August) rainy seasons. This study presents distinct teleconnections between the SC precipitation in the two periods and the sea surface temperatures (SSTs) in the tropical oceans. In the early rainy season when the major monsoon rain belt is located in SC, the increased local precipitation is related to the tropical Indian Ocean Basin warming. The basin warming induces an anomalous anticyclone in the South China Sea–western North Pacific (SCS-WNP). The related southwesterly anomalies transport more moisture to SC and lead to more moisture convergence and precipitation there. In the late rainy season when the major monsoon rain belt migrates northward to the Yangtze River valley, the precipitation increase in SC can be caused by the dipole SST anomalies in the tropical Pacific with the cold anomalies near the Maritime Continent and warm ones near the date line. The dipole SST anomalies generate an anomalous cyclone in the WNP with its center more northward than that of the anomalous anticyclone in the early rainy season. The related northeasterly anomalies along its northwestern flank reduce the climatological northward transport of moisture flux out of SC, and increase the moisture convergence and precipitation there. The distinct teleconnections between the SC precipitation and the tropical SSTs in the early and late rainy seasons can be well reproduced in the sensitivity experiments by an atmospheric general circulation model.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chaoxia Yuan, chaoxia.yuan@nuist.edu.cn
Save
  • Adler, R., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, https://doi.org/10.1175/jcli-3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, M., 2007: The statistical analysis of the persistent heavy rain in the last 50 years over China and their backgrounds on the large scale circulation (in Chinese). Chin. J. Atmos. Sci., 31, 779792.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y., J. He, Y. Liu, and P. Liang, 2006: Features of moisture transport of in pre-summer flood season of drought and flood years over South China (in Chinese). Plateau Meteor., 25, 10641070.

    • Search Google Scholar
    • Export Citation
  • Chi, Y., J. He, and Z. Wu, 2005: Features analysis of the different precipitation periods in the pre-rainy season in South China (in Chinese). J. Nanjing Inst. Meteor., 28, 163171.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S.-P. Xie, J.-J. Luo, J. Hafner, S. Behera, Y. Masumoto, and T. Yamagata, 2011: Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 36, 607621, https://doi.org/10.1007/s00382-009-0686-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and Coauthors, 2007: China’s National Assessment Report on Climate Change (I): Climate change in China and the future trend. Adv. Climate Change Res., 3 (Suppl.), 15, https://www.researchgate.net/publication/242281068_China's_National_Assessment_Report_on_Climate_Change_I_Climate_change_in_China_and_the_future_trend.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, F., Q. Liu, J. Yang, and L. Fan, 2018: Three types of Indian Ocean basin modes. Climate Dyn., 51, 43574370, https://doi.org/10.1007/s00382-017-3676-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part I. Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., J. Chen, L. Wang, and Z. Lin, 2012: Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910942, https://doi.org/10.1007/s00376-012-2015-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karori, M. A., J. Li, and F.-F. Jin, 2013: The asymmetric influence of the two types of El Niño and La Niña on summer rainfall over southeast China. J. Climate, 26, 45674582, https://doi.org/10.1175/JCLI-D-12-00324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, X., J. Mao, and G. Wu, 2017: Influence on the South China rainfall anomalies of the atmospheric quasi-biweekly oscillation in mid-high latitude during the summer of 2002 (in Chinese). Chin. J. Atmos. Sci., 41, 12041220, https://doi.org/10.3878/j.issn.1006-9895.1703.16277.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140, https://doi.org/10.1175/1520-0442(2002)015<1118:EWENOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and S. Yang, 1997: Climatology and interannual variability of the Southeast Asian monsoon. Adv. Atmos. Sci., 14, 141162, https://doi.org/10.1007/s00376-997-0016-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., A. Leetmaa, and M. J. Nath, 2006: Attribution of atmospheric variations in the 1997–2003 period to SST anomalies in the Pacific and Indian Ocean basins. J. Climate, 19, 36073628, https://doi.org/10.1175/JCLI3813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-H., C.-H. Ho, and J.-H. Kim, 2010: Influence of tropical cyclone landfalls on spatiotemporal variations in typhoon season rainfall over South China. Adv. Atmos. Sci., 27, 443454, https://doi.org/10.1007/s00376-009-9106-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and L. Zhang, 2009: Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models. Climate Dyn., 32, 935968, https://doi.org/10.1007/s00382-008-0465-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., and B. Wang, 2016: Northern East Asian low and its impact on the interannual variation of East Asian summer rainfall. Climate Dyn., 46, 8397, https://doi.org/10.1007/s00382-015-2570-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J, C. Yuan, W. Sasaki, S. Behera, Y. Masumoto, T. Yamgata, J.-Y. Lee, and S. Masson, 2016: Current status of intraseasonal-seasonal-to-interannual prediction of the Indo-Pacific climate. Indo-Pacific Climate Variability and Predictability, S. K. Behera and T. Yamagata, Eds., World Scientific, 63–107, https://doi.org/10.1142/9789814696623_0003.

    • Crossref
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, F., B. Gleason, and D. Easterling, 2002: Typhoon impacts on China’s precipitation during 1957–1996. Adv. Atmos. Sci., 19, 943952, https://doi.org/10.1007/s00376-002-0057-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., J. Ok, J.-H. Son, and D.-H. Cha, 2013: Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 76627675, https://doi.org/10.1175/JCLI-D-12-00694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 16791697, https://doi.org/10.1175/JCLI-D-13-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivas, G., J. S. Chowdary, Y. Kosaka, C. Gnanaseelan, A. Parekh, and K. V. S. R. Prasad, 2018: Influence of the Pacific–Japan pattern on Indian summer monsoon rainfall. J. Climate, 31, 39433958, https://doi.org/10.1175/JCLI-D-17-0408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Q., R. Lu, and C. Li, 2014: Large-scale circulation anomalies associated with interannual variation in monthly rainfall over South China from May to August. Adv. Atmos. Sci., 31, 273282, https://doi.org/10.1007/s00376-013-3051-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, W., Z. Sun, and G. Tan, 2008: Effect of Indian Ocean dipole on rainfall anomaly in south of China (in Chinese). J. Nanjing Inst. Meteor., 31, 836843.

    • Search Google Scholar
    • Export Citation
  • Tao, L., T. Li, Y.-H. Ke, and J.-W. Zhao, 2017: Causes of interannual and interdecadal variations of the summertime Pacific-Japan-like pattern over East Asia. J. Climate, 30, 88458864, https://doi.org/10.1175/JCLI-D-15-0817.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Q. Wang, 2010: Definition of the South China Sea summer monsoon onset. Chin. J. Oceanol. Limnol., 28, 12811289, https://doi.org/10.1007/s00343-010-9950-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Ed., 2006: The Asian Monsoon. Springer-Praxis, 845 pp.

  • Wang, B., and R. Wu, 1997: Peculiar temporal structure of the South China Sea summer monsoon. Adv. Atmos. Sci., 14, 177194, https://doi.org/10.1007/s00376-997-0018-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., LinHo, Y. Zhang, and M.-M. Lu, 2004: Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon. J. Climate, 17, 699710, https://doi.org/10.1175/2932.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, J. Yang, T. Zhou, and Z. Wu, 2009: Distinct principal modes of early and late summer rainfall anomalies in East Asia. J. Climate, 22, 38643875, https://doi.org/10.1175/2009JCLI2850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 27182722, https://doi.org/10.1073/pnas.1214626110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113129, https://doi.org/10.1007/s00382-007-0234-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663674, https://doi.org/10.1007/s00382-008-0394-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2017a: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 96219635, https://doi.org/10.1175/JCLI-D-16-0489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2017b: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II: Formation processes. J. Climate, 30, 96379650, https://doi.org/10.1175/JCLI-D-16-0495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., Y. Liu, B. He, Q. Bao, A. Duan, and F.-F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, https://doi.org/10.1038/srep00404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., G. Huang, Z. C. Du, and K. M. Hu, 2014: Cross-season relation of the South China Sea precipitation variability between winter and summer. Climate Dyn., 43, 193207, https://doi.org/10.1007/s00382-013-1820-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T.-W., and Z.-A. Qian, 2003: The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation. J. Climate, 16, 20382051, https://doi.org/10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., 1994: Heavy losses in South China and large arid area in North and Northeast China (in Chinese). Meteor. Mon., 9, 6263.

  • Yang, H., and S. Sun, 2005: The characteristics of longitudinal movement of the subtropical high in the western Pacific in the pre-rainy season in South China. Adv. Atmos. Sci., 22, 392400, https://doi.org/10.1007/BF02918752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, Z. Liu, L. Wu, and F. Huang, 2009: Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circumglobal teleconnection. Geophys. Res. Lett., 36, L19705, https://doi.org/10.1029/2009GL039559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., T. Hu, and C. Wang, 2017: A numerical study on the relationship between the spring–winter snow cover anomalies over the northern and southern Tibetan Plateau and summer precipitation in East China (in Chinese). Chin. J. Atmos. Sci., 41, 345356.

    • Search Google Scholar
    • Export Citation
  • You, Q., and Coauthors, 2011: Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Climate Dyn., 36, 23992417, https://doi.org/10.1007/s00382-009-0735-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, D13106, https://doi.org/10.1029/2006JD007654.

    • Search Google Scholar
    • Export Citation
  • Yuan, F., and W. Chen, 2013: Roles of the tropical convective activities over different regions in the earlier onset of the South China Sea summer monsoon after 1993. Theor. Appl. Climatol., 113, 175185, https://doi.org/10.1007/s00704-012-0776-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, F., K. Wei, W. Chen, S. K. Fong, and K. C. Leong, 2010: Temporal variations of the frontal and monsoon storm rainfall during the first rainy season in South China. Atmos. Oceanic Sci. Lett., 3, 243247, https://doi.org/10.1080/16742834.2010.11446876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., X. Zhang, H. Wan, and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, https://doi.org/10.1175/JCLI-3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., X. Gu, J. Li, P. Shi, and V. P. Singh, 2018: The impact of tropical cyclones on extreme precipitation over coastal and inland areas of China and its association to the ENSO. J. Climate, 31, 18651880, https://doi.org/10.1175/JCLI-D-17-0474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. Klein Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, https://doi.org/10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., T. Li, and B. Wang, 2004: Decadal changes of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Climate, 17, 27802793, https://doi.org/10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, P., X. Zhang, X. Zhou, M. Ikeda, and Y. Yin, 2004: The sea ice extent anomaly in the North Pacific and its impact on the East Asian summer monsoon rainfall. J. Climate, 17, 34343447, https://doi.org/10.1175/1520-0442(2004)017<3434:TSIEAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., Q. H. Wen, Y. Xu, L. Song, and X. Zhang, 2014: Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Climate, 27, 65916611, https://doi.org/10.1175/JCLI-D-13-00761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C. W., W.-S. Lee, H. Kang, and C.-K. Park, 2005: A proper monsoon index for seasonal and interannual variations of the East Asian monsoon. Geophys. Res. Lett., 32, L02811, https://doi.org/10.1029/2004GL021295.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1276 324 65
PDF Downloads 843 198 9