• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302319, https://doi.org/10.1175/JCLI-3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., Z. Wen, R. Wu, Z. Chen, and P. Zhao, 2014: Interdecadal changes in the relationship between southern China winter–spring precipitation and ENSO. Climate Dyn., 43, 13271338, https://doi.org/10.1007/s00382-013-1947-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., Z. Wen, R. Wu, X. Wang, C. He, and Z. Chen, 2017: An interdecadal change in the intensity of interannual variability in summer rainfall over southern China around early 1990s. Climate Dyn., 48, 191207, https://doi.org/10.1007/s00382-016-3069-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Z., C. Weng, J. Guo, L. Dai, and Z. Zhou, 2018: Vegetation responses to late Quaternary climate change in a biodiversity hotspot, the Three Parallel Rivers region in southwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 491, 1020, https://doi.org/10.1016/j.palaeo.2017.11.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, E., Y. Wang, L. Ma, L. Yin, and Z. Wu, 2018: ‘Urban-rural’ gradient analysis of landscape changes around cities in mountainous regions: A case study of the Hengduan Mountain region in Southwest China. Sustainability, 10, 1019, https://doi.org/10.3390/su10041019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20, 37513767, https://doi.org/10.1175/JCLI4221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., Z. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol., 28, 11391161, https://doi.org/10.1002/joc.1615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, D., G. Huang, W. Tao, R. Wu, K. Hu, and C. Li, 2018: Interannual variation of precipitation over the Hengduan Mountains during rainy season. Int. J. Climatol., 38, 21122125, https://doi.org/10.1002/joc.5321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., and M. J. McPhaden, 2017a: The effects of external forcing and internal variability on the formation of interhemispheric sea surface temperature gradient trends in the Indian Ocean. J. Climate, 30, 90779095, https://doi.org/10.1175/JCLI-D-17-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., and M. J. McPhaden, 2017b: Why has the relationship between Indian and Pacific Ocean decadal variability changed in recent decades? J. Climate, 30, 19711983, https://doi.org/10.1175/JCLI-D-16-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., T. Zhou, and B. Wu, 2013: Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism. Climate Dyn., 42, 203217, https://doi.org/10.1007/s00382-013-1722-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, W., and Coauthors, 2016: Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat. Commun., 7, 10925, https://doi.org/10.1038/ncomms10925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and S.-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, https://doi.org/10.1029/2008GL033631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, S., Y. Zhao, L. Han, and C. Ma, 2017: Analysis of landscape patterns of arid valleys in China, based on grain size effect. Sustainability, 9, 2263, https://doi.org/10.3390/su9122263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and C.-H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, 1436, https://doi.org/10.1029/2001GL014523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., D. Guo, S. Li, and S.-J. Kim, 2017: Winter AO/NAO modifies summer ocean heat content and monsoonal circulation over the western Indian Ocean. J. Meteor. Res., 31, 94106, https://doi.org/10.1007/s13351-017-6175-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, Z., G. Feng, M. M. Dogar, and G. Huang, 2018: The possible physical mechanism for the EAP–SR co-action. Climate Dyn., 51, 14991516, https://doi.org/10.1007/s00382-017-3967-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., M. S. Madhusoodanan, C. P. Neema, and D. Sengupta, 2006: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett., 33, L02706, https://doi.org/10.1029/2005GL024803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, Y., Z. Zhong, H. Chen, and Y. Hu, 2016: Out-of-phase decadal changes in boreal summer rainfall between Yellow-Huaihe River Valley and southern China around 2002/2003. Climate Dyn., 47, 137158, https://doi.org/10.1007/s00382-015-2828-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harada, Y., and Coauthors, 2016: The JRA-55 Reanalysis: Representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan, 94, 269302, https://doi.org/10.2151/jmsj.2016-015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, X., and R. Lu, 2016: The meridional displacement of the summer Asian jet, Silk Road pattern, and tropical SST anomalies. J. Climate, 29, 37533766, https://doi.org/10.1175/JCLI-D-15-0541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, X., R. Lu, and S. Li, 2017: Amplified summer warming in Europe–West Asia and Northeast Asia after the mid-1990s. Environ. Res. Lett., 12, 094007, https://doi.org/10.1088/1748-9326/aa7909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., S.-P. Xie, and G. Huang, 2017: Orographically anchored El Niño effect on summer rainfall in central China. J. Climate, 30, 10 03710 045, https://doi.org/10.1175/JCLI-D-17-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., 1997: Interdecadal variability of summer climate over East Asia and its association with 500 hPa height and global sea surface temperature. J. Geophys. Res., 102, 19 40319 412, https://doi.org/10.1029/97JD01052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L., L. Zhong, and Z. Ma, 2017: Decadal transition of moisture sources and transport in northwestern China during summer from 1982 to 2010. J. Geophys. Res. Atmos., 122, 12 52212 540, https://doi.org/10.1002/2017JD027728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., Y. Liu, and T. Feng, 2013: Interdecadal change of summer precipitation over eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes. Chin. Sci. Bull., 58, 13391349, https://doi.org/10.1007/s11434-012-5545-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwao, K., and M. Takahashi, 2008: A precipitation seesaw mode between Northeast Asia and Siberia in summer caused by Rossby waves over the Eurasian continent. J. Climate, 21, 24012419, https://doi.org/10.1175/2007JCLI1949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and M. Ting, 2017: A dipole pattern of summertime rainfall across the Indian subcontinent and the Tibetan Plateau. J. Climate, 30, 96079620, https://doi.org/10.1175/JCLI-D-16-0914.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamae, Y., X. Li, S.-P. Xie, and H. Ueda, 2017: Atlantic effects on recent decadal trends in global monsoon. Climate Dyn., 49, 34433455, https://doi.org/10.1007/s00382-017-3522-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, https://doi.org/10.2151/jmsj.87.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., K.-M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 24612482, https://doi.org/10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K.-M. Kim, 2012: The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. J. Hydrometeor., 13, 392403, https://doi.org/10.1175/JHM-D-11-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lepage, Y., 1971: A combination of Wilcoxon’s and Ansari-Bradley’s statistics. Biometrika, 58, 213217, https://doi.org/10.1093/biomet/58.1.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Climate Dyn., 34, 501514, https://doi.org/10.1007/s00382-008-0482-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2015: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. He, C. Wang, X. Wang, H. Xin, W. Zhang, and W. Cao, 2011: Spatial and temporal trends of temperature and precipitation during 1960–2008 at the Hengduan Mountains, China. Quat. Int., 236, 127142, https://doi.org/10.1016/j.quaint.2010.05.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Huang, and R. Huang, 2011: Inter-decadal variability of summer rainfall in Eastern China detected by the Lepage test. Theor. Appl. Climatol., 106, 481488, https://doi.org/10.1007/s00704-011-0442-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R.-Y., J.-H. Oh, and B.-J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 4455, https://doi.org/10.1034/j.1600-0870.2002.00248.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., 2007: The interdecadal trend and shift of dry/wet over the central part of North China and their relationship to the Pacific decadal oscillation (PDO). Chin. Sci. Bull., 52, 21302139, https://doi.org/10.1007/s11434-007-0284-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., M. H. England, A. Sen Gupta, and P. Spence, 2018: Role of Pacific trade winds in driving ocean temperatures during the recent slowdown and projections under a wind trend reversal. Climate Dyn., 51, 321336, https://doi.org/10.1007/s00382-017-3923-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and T. Fukamachi, 2004: Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Quart. J. Roy. Meteor. Soc., 130, 12131233, https://doi.org/10.1256/qj.03.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, Z. L., Z. J. Gu, and H. Sun, 2002: Cytological study of Tibetia (Fabaceae) in the Hengduan Mountains region, China. J. Plant Res., 115, 1722, https://doi.org/10.1007/s102650200003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, J., W. Chen, K. Wei, Y. Liu, H.-F. Graf, J.-B. Ahn, and A. Pogoreltsev, 2017: An abrupt rainfall decrease over the Asian inland plateau region around 1999 and the possible underlying mechanism. Adv. Atmos. Sci., 34, 456468, https://doi.org/10.1007/s00376-016-6136-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, J., W. Chen, S. Chen, and K. Wei, 2018: Intensified impact of North Atlantic Oscillation in May on subsequent July Asian inland plateau precipitation since the late 1970s. Int. J. Climatol., 38, 26052612, https://doi.org/10.1002/joc.5332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, C., and T. Zhou, 2014: Multidecadal variability of north China aridity and its relationship to PDO during 1900–2010. J. Climate, 27, 12101222, https://doi.org/10.1175/JCLI-D-13-00235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, C., J.-Y. Yu, and G. Chen, 2014: Decadal summer drought frequency in China: The increasing influence of the Atlantic Multi-decadal Oscillation. Environ. Res. Lett., 9, 124004, https://doi.org/10.1088/1748-9326/9/12/124004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., and G. Huang, 2016: The global warming–induced South Asian high change and its uncertainty. J. Climate, 29, 22592273, https://doi.org/10.1175/JCLI-D-15-0638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, Y., L. Song, Z. Wang, Y. Xiao, and B. Zhou, 2017: A possible abrupt change in summer precipitation over eastern China around 2009. J. Meteor. Res., 31, 397408, https://doi.org/10.1007/s13351-016-6021-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: Atmospheric general circulation model ECHAM5: Part I. Max-Planck-Institute for Meteorology Rep. 349, 140 pp., https://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf.

  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D., and Y. Ding, 2016: Oceanic forcings of the interdecadal variability in East Asian summer rainfall. J. Climate, 29, 76337649, https://doi.org/10.1175/JCLI-D-15-0792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D., Y. Ding, and Y. Liu, 2009: Decadal northward shift of the Meiyu belt and the possible cause. Chin. Sci. Bull., 54, 47424748, https://doi.org/10.1007/s11434-009-0385-y.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16, 14951510, https://doi.org/10.1175/1520-0442-16.10.1495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., H. Wang, and W. Yuan, 2009: Role of the tropical Atlantic sea surface temperature in the decadal change of the summer North Atlantic Oscillation. J. Geophys. Res., 114, D20110, https://doi.org/10.1029/2009JD012395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., G. Huang, K. Hu, X. Qu, G. Wen, and Y. Gong, 2014: Different influences of two types of El Niños on the Indian Ocean SST variations. Theor. Appl. Climatol., 117, 475484, https://doi.org/10.1007/s00704-013-1022-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., G. Huang, R. Wu, K. Hu, P. Wang, and D. Chen, 2017: Asymmetry in summertime atmospheric circulation anomalies over the northwest Pacific during decaying phase of El Niño and La Niña. Climate Dyn., 49, 20072023, https://doi.org/10.1007/s00382-016-3432-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, W., S. He, Q. Yan, W. Dong, and X. Wen, 2018: Decadal shift in west China autumn precipitation and its association with sea surface temperature. J. Geophys. Res. Atmos., 123, 835847, https://doi.org/10.1002/2017JD027092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., P. Xu, W. Chen, and Y. Liu, 2017: Interdecadal variations of the Silk Road pattern. J. Climate, 30, 99159932, https://doi.org/10.1175/JCLI-D-17-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., G. Huang, W. Chen, W. Zhou, and W. Wang, 2018: Wet-to-dry shift over Southwest China in 1994 tied to the warming of tropical warm pool. Climate Dyn., 51, 31113123, https://doi.org/10.1007/s00382-018-4068-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29, 1478, https://doi.org/10.1029/2001GL014318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., K. M. Lau, and Y. Xue, 1999: Multi-scale summer rainfall variability over China and its long-term link to global sea surface temperature variability. J. Meteor. Soc. Japan, 77, 845857, https://doi.org/10.2151/jmsj1965.77.4_845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Lin, and T. Zhou, 2016: Interdecadal circumglobal teleconnection pattern during boreal summer. Atmos. Sci. Lett., 17, 446452, https://doi.org/10.1002/asl.677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z. Wen, S. Yang, and Y. Li, 2010: An interdecadal change in southern China summer rainfall around 1992/93. J. Climate, 23, 23892403, https://doi.org/10.1175/2009JCLI3336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xing, Y., and R. H. Ree, 2017: Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. USA, 114, E3444E3451, https://doi.org/10.1073/pnas.1616063114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., K. Fan, and H. Wang, 2015: Decadal variation of summer precipitation over China and associated atmospheric circulation after the late 1990s. J. Climate, 28, 40864106, https://doi.org/10.1175/JCLI-D-14-00464.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., Z. Ma, X. Fan, Z.-L. Yang, Z. Xu, and P. Wu, 2017: Decadal modulation of precipitation patterns over eastern China by sea surface temperature anomalies. J. Climate, 30, 70177033, https://doi.org/10.1175/JCLI-D-16-0793.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, C., S. Yang, W. Qian, Z. Lin, and M. Wen, 2008: Regional summer precipitation events in Asia and their changes in the past decades. J. Geophys. Res., 113, D17107, https://doi.org/10.1029/2007JD009603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, S.-L., G. Huang, R.-G. Wu, X. Qu, and D. Chen, 2016: Inhomogeneous warming of the tropical Indian Ocean in the CMIP5 model simulations during 1900–2005 and associated mechanisms. Climate Dyn., 46, 619636, https://doi.org/10.1007/s00382-015-2602-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, S.-L., J.-J. Luo, G. Huang, and P. Wang, 2017: Distinct global warming rates tied to multiple ocean surface temperature changes. Nat. Climate Change, 7, 486491, https://doi.org/10.1038/nclimate3304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yonetani, T., and G. J. J. McCabe, 1994: Abrupt changes in regional temperature in the conterminous United States, 1895–1989. Climate Res., 4, 1323, https://doi.org/10.3354/cr004013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., T. Furevik, O. H. Otterå, and Y. Gao, 2015: Modulation of the Pacific Decadal Oscillation on the summer precipitation over East China: A comparison of observations to 600-years control run of Bergen Climate Model. Climate Dyn., 44, 475494, https://doi.org/10.1007/s00382-014-2141-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., S. Pan, L. Cao, Y. Wang, Y. Zhao, and W. Zhang, 2014: Spatial distribution and temporal trends in precipitation extremes over the Hengduan Mountains region, China, from 1961 to 2012. Quat. Int., 349, 346356, https://doi.org/10.1016/j.quaint.2014.04.050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., G. Li, X. Fu, Y. Liu, and L. Li, 2014: Clustering of Tibetan Plateau vortices by 10–30-day intraseasonal oscillation. Mon. Wea. Rev., 142, 290300, https://doi.org/10.1175/MWR-D-13-00137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., B. Li, Y. He, J. Du, H. Niu, and H. Xin, 2015: Spatial and temporal distribution of precipitation based on corrected TRMM data in Hengduan Mountains (in Chinese). Ziran Ziyuan Xuebao, 30, 260270.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., D. Gong, J. Li, and B. Li, 2009: Detecting and understanding the multi-decadal variability of the East Asian summer monsoon—Recent progress and state of affairs. Meteor. Z., 18, 455467, https://doi.org/10.1127/0941-2948/2009/0396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, G., T. Pu, T. Zhang, H. Liu, X. Zhang, and F. Liang, 2013: The accuracy of TRMM precipitation data in Hengduan Mountainous Region, China (in Chinese). Dili Kexue, 33, 11251131.

    • Search Google Scholar
    • Export Citation
  • Zhu, G., and Coauthors, 2016: Variation of Thornthwaite moisture index in Hengduan Mountains, China. Chin. Geogr. Sci., 26, 687702, https://doi.org/10.1007/s11769-016-0820-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 332 130 9
PDF Downloads 412 280 9

Interdecadal Variation of Precipitation over the Hengduan Mountains during Rainy Seasons

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 3 University of Chinese Academy of Sciences, Beijing, China
  • | 4 Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
  • | 5 State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
  • | 6 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • | 7 Joint Center for Global Change Studies, Beijing, China
  • | 8 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Restricted access

Abstract

The present study investigates the interdecadal variation of precipitation over the Hengduan Mountains (HM) during rainy seasons from various reanalysis and observational datasets. Based on a moving t test and Lepage test, an obvious rainfall decrease is identified around 2004/05. The spatial distribution of the rainfall changes exhibits large and significant precipitation deficits over the southern HM, with notable anomalous lower-level easterly divergent winds along the southern foothills of the Himalayas (SFH). The anomalous easterlies are located at the northern edge of two cyclones, with two centers of positive rainfall anomalies over the west coast of India (WCI) and the Bay of Bengal (BOB). Observational evidence and numerical experiments demonstrate that the decadal changes of SST over the WP and WIO suppress rainfall over the eastern Indian Ocean (EIO) through large-scale circulation adjustment. The EIO dry anomalies trigger the cross-equatorial anticyclonic wind anomalies as a Rossby wave response, and further cause anomalous meridional circulation and moisture transport over the WCI and BOB, favoring the rainfall increase there. The anomalous easterlies at the northern edge of two cyclones induced by the wet anomalies–related heating cause the divergence anomalies along the SFH, resulting in the reduction of precipitation in the HM. In turn, the two anomalous cyclones and dry anomalies have positive feedback on the wet and easterly wind anomalies, respectively, emphasizing the importance of the circulation–heating interaction.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0670.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Weichen Tao, tao@mail.iap.ac.cn

Abstract

The present study investigates the interdecadal variation of precipitation over the Hengduan Mountains (HM) during rainy seasons from various reanalysis and observational datasets. Based on a moving t test and Lepage test, an obvious rainfall decrease is identified around 2004/05. The spatial distribution of the rainfall changes exhibits large and significant precipitation deficits over the southern HM, with notable anomalous lower-level easterly divergent winds along the southern foothills of the Himalayas (SFH). The anomalous easterlies are located at the northern edge of two cyclones, with two centers of positive rainfall anomalies over the west coast of India (WCI) and the Bay of Bengal (BOB). Observational evidence and numerical experiments demonstrate that the decadal changes of SST over the WP and WIO suppress rainfall over the eastern Indian Ocean (EIO) through large-scale circulation adjustment. The EIO dry anomalies trigger the cross-equatorial anticyclonic wind anomalies as a Rossby wave response, and further cause anomalous meridional circulation and moisture transport over the WCI and BOB, favoring the rainfall increase there. The anomalous easterlies at the northern edge of two cyclones induced by the wet anomalies–related heating cause the divergence anomalies along the SFH, resulting in the reduction of precipitation in the HM. In turn, the two anomalous cyclones and dry anomalies have positive feedback on the wet and easterly wind anomalies, respectively, emphasizing the importance of the circulation–heating interaction.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0670.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Weichen Tao, tao@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 960.82 KB)
Save