• Bejarano, L, and F.-F. Jin, 2008: Coexistence of equatorial coupled modes of ENSO. J. Climate, 21, 30513067, https://doi.org/10.1175/2007JCLI1679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Y. S. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M. Y., J.-Y. Yu, X. Wang, and W. Jiang, 2019: The changing impact mechanisms of a diverse El Niño on the western Pacific subtropical high. Geophys. Res. Lett., 46, 953962, https://doi.org/10.1029/2018GL081131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J.-K. Park, B. Dong, R. Lu, and W.-S. Jung, 2012: The relationship between El Niño and the western north Pacific summer climate in a coupled GCM: Role of the transition of El Niño decaying phases. J. Geophys. Res., 117, D12111, https://doi.org/10.1029/2011JD017385.

    • Search Google Scholar
    • Export Citation
  • Chen, X. L., and T. J. Zhou, 2014: Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific–Japan pattern interannual variability. J. Geophys. Res. Atmos., 119, 13 04313 066, https://doi.org/10.1002/2014JD022064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, X. Lin, and J. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 10271041, https://doi.org/10.1007/s00382-015-2630-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, and Y. Du, 2017: Roles of tropical SST anomalies in modulating the western north Pacific anomalous cyclone during strong La Niña decaying years. Climate Dyn., 49, 633647, https://doi.org/10.1007/s00382-016-3364-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Y. Du, Z. Wen, R. Wu, and C. Wang, 2018: Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: Role of southeast tropical Indian Ocean warming, 50, 4707–4719, https://doi.org/10.1007/s00382-017-3899-z.

    • Crossref
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631, https://doi.org/10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18, 41304149, https://doi.org/10.1175/JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., L. F. Huang, J. Y. Tu, L. S. Tseng, and Y. C. Hsueh, 2009: El Niño impacts on precipitation in the western North Pacific–East Asian sector. J. Climate, 22, 20392057, https://doi.org/10.1175/2008JCLI2649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S.-P. Xie, J.-J. Luo, J. Hafner, S. Behera, Y. Masumoto, and T. Yamagata, 2011: Predictability of northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 36, 607621, https://doi.org/10.1007/s00382-009-0686-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., A. Parekh, R. Kakatkar, C. Gnanaseelan, G. Srinivas, P. Singh, and M. K. Roxy, 2016: Tropical Indian Ocean response to the decay phase of El Niño in a coupled model and associated changes in south and East-Asian summer monsoon circulation and rainfall. Climate Dyn., 47, 831844, https://doi.org/10.1007/s00382-015-2874-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., H. S. Harsha, C. Gnanaseelan, G. Srinivas, A. Parekh, P. Pillai, and C. V. Naidu, 2017: Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño. Climate Dyn., 48, 27072727, https://doi.org/10.1007/s00382-016-3233-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, P.-H., C.-H. Sui, and T. Li, 2011: Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. J. Geophys. Res., 116, D13111, https://doi.org/10.1029/2010JD015554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, G. Huang, and K. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, L., S. I. Shin, Q. Y. Liu, and Z. Y. Liu, 2013: Relative importance of tropical SST anomalies in forcing East Asian summer monsoon circulation. Geophys. Res. Lett., 40, 24712477, https://doi.org/10.1002/grl.50494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases? J. Climate, 27, 26822698, https://doi.org/10.1175/JCLI-D-13-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, C., and D. Ye, 1988: The tropical very low-frequency oscillation on interannual scale. Adv. Atmos. Sci., 5, 369388, https://doi.org/10.1007/BF02656760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., and R. Wu, 2014: Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Climate Dyn., 42, 23232337, https://doi.org/10.1007/s00382-014-2123-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D. and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev ., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1982: Reply. Mon. Wea. Rev., 110, 1497, https://doi.org/10.1175/1520-0493(1982)110<1497:R>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., S.-P. Xie, and G. Huang, 2017: Orographically anchored El Niño effect on summer rainfall in central China. J. Climate, 30, 10 03710 045, https://doi.org/10.1175/JCLI-D-17-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B. H., and J. L. Kinter, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3199, https://doi.org/10.1029/2001JC001278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and L. Lu, 1989: Numerical simulation of the relationship between the anomaly of subtropical high over East Asia and the convective activities in the western tropical Pacific. Adv. Atmos. Sci., 6, 202214, https://doi.org/10.1007/BF02658016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132, https://doi.org/10.1007/BF02656915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K. Y., and Y. Y. Kim, 2002: Mechanism of Kelvin and Rossby waves during ENSO events. Meteor. Atmos. Phys., 81, 169189, https://doi.org/10.1007/s00703-002-0547-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 20362057, https://doi.org/10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, https://doi.org/10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2006: ENSO modulation of the interannual and intraseasonal variability of the East Asian monsoon—A model study. J. Climate, 19, 45084530, https://doi.org/10.1175/JCLI3878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, T. J. Zhou, C. P. Chang, and R. H. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and R. Lu, 2017: Extratropical factors affecting the variability in summer precipitation over the Yangtze River basin. J. Climate, 30, 83578374, https://doi.org/10.1175/JCLI-D-16-0282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z. D., and R. Y. Lu, 2009: The ENSO’s effect on eastern China rainfall in the following early summer. Adv. Atmos. Sci., 26, 333342, https://doi.org/10.1007/s00376-009-0333-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., Y. Li, and B. Dong, 2006: External and internal summer atmospheric variability in the western North Pacific and East Asia. J. Meteor. Soc. Japan, 84, 447462, https://doi.org/10.2151/jmsj.84.447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. MPI Tech. Rep. 349, 127 pp.

  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., F.-F. Jin, A. Timmermann, and S. McGregor, 2015: Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Climate, 28, 10931111, https://doi.org/10.1175/JCLI-D-14-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., P.-H. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett., 34, L11701, https://doi.org/10.1029/2006GL029204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., G. Huang, R. Wu, K. Hu, P. Wang, and D. Chen, 2017: Asymmetry in summertime atmospheric circulation anomalies over the northwest Pacific during decaying phase of El Niño and La Niña. Climate Dyn., 49, 20072023, https://doi.org/10.1007/s00382-016-3432-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Q. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 27182722, https://doi.org/10.1073/pnas.1214626110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res. Oceans, 103, 14 45114 510, https://doi.org/10.1029/97JC02719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., and T. Zhou, 2008: Oceanic origin of the interannual and interdecadal variability of the summertime western Pacific subtropical high. Geophys. Res. Lett., 35, L13701, https://doi.org/10.1029/2008GL034584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2017: Atmospheric dynamic and thermodynamic processes driving the western north Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 96219635, https://doi.org/10.1175/JCLI-D-16-0489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, https://doi.org/10.1029/2007JD009316.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. M. Hu, J. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, and Z. Liu, 2010: Linking observations of the Asian monsoon to the Indian Ocean SST: Possible roles of Indian Ocean basin mode and dipole mode. J. Climate, 23, 58895902, https://doi.org/10.1175/2010JCLI2962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeo, S.-R., S.-W. Yeh, Y. Kim, and S.-Y. Yim, 2018: Monthly climate variation over Korea in relation to the two types of ENSO evolution. Int. J. Climatol., 38, 811824, https://doi.org/10.1002/joc.5212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, K.-S., K.-J. Ha, S.-W. Yeh, B. Wang, and B. Xiang, 2015: Critical role of boreal summer North Pacific subtropical highs in ENSO transition. Climate Dyn., 44, 19791992, https://doi.org/10.1007/s00382-014-2193-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and Coauthors, 2016: Unraveling El Niño’s impact on the East Asian monsoon and Yangtze River summer flooding. Geophys. Res. Lett., 43, 11 37511 382, https://doi.org/10.1002/2016GL071190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and G. W. K. Moore, 2008: Trends in the boreal summer regional Hadley and Walker circulations as expressed in precipitation records from Asia and Africa during the latter half of the 20th century. Int. J. Climatol., 28, 563578, https://doi.org/10.1002/joc.1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., X.-H. Fang, J.-Y. Yu, and J. Zhu, 2014: Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett., 41, 76517657, https://doi.org/10.1002/2014GL062125.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 478 325 33
PDF Downloads 429 305 24

Northwest Pacific Anticyclonic Anomalies during Post–El Niño Summers Determined by the Pace of El Niño Decay

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and College of Oceanography, Hohai University, Nanjing, China
  • | 2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Joint Center for Global Change Studies, Beijing, and University of Chinese Academy of Sciences, Beijing, China
  • | 3 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and Joint Center for Global Change Studies, and Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 4 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 5 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Restricted access

Abstract

This study investigates the characteristics and maintaining mechanisms of the anomalous northwest Pacific anticyclone (NWPAC) following different El Niño decaying paces. In fast decaying El Niño summers, the positive SST anomalies in the tropical central-eastern Pacific (TCEP) have transformed to negative, and positive SST anomalies appear around the Maritime Continent (MC), whereas in slow decaying El Niño summers, positive SST anomalies are present in the TCEP and in the tropical Indian Ocean (TIO). During fast decaying El Niño summers, the cold Rossby wave in response to the negative TCEP SST anomalies has a primary contribution to maintaining the NWPAC anomalies. The warm Kelvin wave response and enhanced Hadley circulation anomalies forced by the positive MC SST anomalies also facilitate developing the NWPAC anomalies. During slow decaying El Niño summers, the warm Kelvin wave anchored over the TIO plays a crucial role in sustaining the NWPAC anomalies, while the warm Rossby wave triggered by the positive TCEP SST anomalies weakens the western part of the NWPAC anomalies. The southwesterly anomalies of the NWPAC anomalies during fast decaying El Niño summers can reach to higher latitudes than those during slow decaying El Niño summers. Correspondingly, positive rainfall anomalies appear in northern China and the Yangtze River basin in fast decaying El Niño summers but are only distributed in the Yangtze River basin in slow decaying El Niño summers. This study implies that the El Niño decaying pace is a key factor in East Asian summer climate.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Dr. Ping Huang, huangping@mail.iap.ac.cn; Dr. Gang Huang, hg@mail.iap.ac.cn

Abstract

This study investigates the characteristics and maintaining mechanisms of the anomalous northwest Pacific anticyclone (NWPAC) following different El Niño decaying paces. In fast decaying El Niño summers, the positive SST anomalies in the tropical central-eastern Pacific (TCEP) have transformed to negative, and positive SST anomalies appear around the Maritime Continent (MC), whereas in slow decaying El Niño summers, positive SST anomalies are present in the TCEP and in the tropical Indian Ocean (TIO). During fast decaying El Niño summers, the cold Rossby wave in response to the negative TCEP SST anomalies has a primary contribution to maintaining the NWPAC anomalies. The warm Kelvin wave response and enhanced Hadley circulation anomalies forced by the positive MC SST anomalies also facilitate developing the NWPAC anomalies. During slow decaying El Niño summers, the warm Kelvin wave anchored over the TIO plays a crucial role in sustaining the NWPAC anomalies, while the warm Rossby wave triggered by the positive TCEP SST anomalies weakens the western part of the NWPAC anomalies. The southwesterly anomalies of the NWPAC anomalies during fast decaying El Niño summers can reach to higher latitudes than those during slow decaying El Niño summers. Correspondingly, positive rainfall anomalies appear in northern China and the Yangtze River basin in fast decaying El Niño summers but are only distributed in the Yangtze River basin in slow decaying El Niño summers. This study implies that the El Niño decaying pace is a key factor in East Asian summer climate.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Dr. Ping Huang, huangping@mail.iap.ac.cn; Dr. Gang Huang, hg@mail.iap.ac.cn
Save