Strong Wind Speed Events over Antarctica and Its Surrounding Oceans

Lejiang Yu State Oceanic Administration Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China

Search for other papers by Lejiang Yu in
Current site
Google Scholar
PubMed
Close
and
Shiyuan Zhong Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, Michigan

Search for other papers by Shiyuan Zhong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Strong wind events (SWEs) over Antarctica and its surrounding oceans are investigated using gridded surface wind data from the ERA-Interim for the 1979–2017 period. Throughout the year, SWEs are more prevalent over the coastal region of East Antarctica where mean surface wind speeds are also higher. The occurrences of SWEs appear to be accompanied by positive anomalies in surface temperature and negative (positive) anomalies in mean sea level pressure related to cyclone (anticyclone) activity over the Ronne and Ross Ice Shelves and coastal regions (the inland areas of East Antarctica). The interannual variability of the SWE occurrences appears to be related to the southern annular mode (SAM) and, to a lesser degree, ENSO. The trends of SWE in the recent four decades exhibit considerable regional variations that are consistent with the trends in seasonal mean wind speed and surface air temperature, and can be largely explained by the variations in the sea level pressure trends across the region.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shiyuan Zhong, zhongs@msu.edu

Abstract

Strong wind events (SWEs) over Antarctica and its surrounding oceans are investigated using gridded surface wind data from the ERA-Interim for the 1979–2017 period. Throughout the year, SWEs are more prevalent over the coastal region of East Antarctica where mean surface wind speeds are also higher. The occurrences of SWEs appear to be accompanied by positive anomalies in surface temperature and negative (positive) anomalies in mean sea level pressure related to cyclone (anticyclone) activity over the Ronne and Ross Ice Shelves and coastal regions (the inland areas of East Antarctica). The interannual variability of the SWE occurrences appears to be related to the southern annular mode (SAM) and, to a lesser degree, ENSO. The trends of SWE in the recent four decades exhibit considerable regional variations that are consistent with the trends in seasonal mean wind speed and surface air temperature, and can be largely explained by the variations in the sea level pressure trends across the region.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shiyuan Zhong, zhongs@msu.edu
Save
  • Adams, N., 2005: Identifying the characteristics of strong southerly wind events at Casey station in East Antarctica using a numerical weather prediction system. Mon. Wea. Rev., 133, 35483561, https://doi.org/10.1175/MWR3050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19, 28962905, https://doi.org/10.1175/JCLI3774.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birnbaum, G., R. Brauner, and H. Ries, 2006: Synoptic situations causing high precipitation rates on the Antarctic plateau: Observations from Kohnen Station, Dronning Maud Land. Antarct. Sci., 18, 279288, https://doi.org/10.1017/S0954102006000320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., J. Turner, J. S. Hosking, and T. Phillips, 2014: Sources of uncertainty in projections of twenty-first century westerly wind changes over the Amundsen Sea, West Antarctica, in CMIP5 climate models. Climate Dyn., 43, 20932104, https://doi.org/10.1007/s00382-013-2032-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chenoli, S. N., J. Turner, and A. A. Samah, 2013: A climatology of strong wind events at McMurdo station, Antarctica. Int. J. Climatol., 33, 26672681, https://doi.org/10.1002/joc.3617.

    • Search Google Scholar
    • Export Citation
  • Chenoli, S. N., J. Turner, and A. A. Samah, 2015: A strong wind event on the Ross Ice Shelf, Antarctica: A case study of scale interactions. Mon. Wea. Rev., 143, 41634180, https://doi.org/10.1175/MWR-D-15-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., and P. A. Stott, 2015: Changes in the geophysical height at 500 hPa under the influence of external climatic forcings. Geophys. Res. Lett., 42, 10 79810 806, https://doi.org/10.1002/2015GL066669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., G. R. Simpkins, and M. H. England, 2015: Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Climate, 28, 5665, https://doi.org/10.1175/JCLI-D-14-00438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deb, P., A. Orr, D. H. Bromwich, J. P. Nicolas, J. Turner, and J. S. Hosking, 2018: Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett., 45, 41244133, https://doi.org/10.1029/2018GL077092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déry, S. J., and M. K. Yau, 2002: Large-scale mass balance effects of blowing snow and surface sublimation. J. Geophys. Res., 107, 4679, https://doi.org/10.1029/2001JD001251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, https://doi.org/10.1038/ngeo1129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., J. C. Fyfe, and D. E. Parker, 2013: Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophys. Res. Lett., 40, 23022306, https://doi.org/10.1002/grl.50500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. E., C. R. Stearns, G. A. Weidner, and L. M. Keller, 2000: Utilization of automatic weather station data for forecasting high wind speeds at Pegasus Runway, Antarctica. Wea. Forecasting, 15, 137151, https://doi.org/10.1175/1520-0434(2000)015<0137:UOAWSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, J. C., and J. Turner, 1997: Antarctic Meteorology and Climatology. Cambridge University Press, 409 pp.

  • Kodra, E., and A. R. Ganguly, 2015: Asymmetry of projected increases in extreme temperature distributions. Sci. Rep., 4, 5884, https://doi.org/10.1038/srep05884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kottmeier, C., and R. Hartig, 1990: Winter observations of the atmosphere over Antarctic sea ice. J. Geophys. Res., 95, 16 55116 560, https://doi.org/10.1029/JD095iD10p16551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., and S. B. Feldstein, 2013: Detecting ozone- and greenhouse gas–driven wind trends with observational data. Science, 339, 563567, https://doi.org/10.1126/science.1225154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. C. Johnson, S. B. Feldstein, and D. Pollard, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, https://doi.org/10.1175/2011JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Quéré, C. L., and Coauthors, 2007: Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316, 17351738, https://doi.org/10.1126/science.1136188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., P. A. Stott, J. Turner, W. M. Connolley, J. C. King, and T. A. Lachlan-Cope, 2004: Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett., 31, L14205, https://doi.org/10.1029/2004GL019952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596, https://doi.org/10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. H. Bromwich, J. G. Powers, and K. W. Manning, 2005: The climate of the McMurdo, Antarctica, region as represented by one year of forecasts from the Antarctic Mesoscale Prediction System. J. Climate, 18, 11741189, https://doi.org/10.1175/JCLI3336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, B. F., and I. Simmonds, 1993: An analysis of strong wind events simulated in a GCM near Casey in the Antarctic. Mon. Wea. Rev., 121, 522534, https://doi.org/10.1175/1520-0493(1993)121<0522:AAOSWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigro, M. A., J. J. Cassano, M. A. Lazzara, and L. M. Keller, 2012: Case study of a barrier wind corner jet off the coast of the Prine Olav Mountains, Antarctica. Mon. Wea. Rev., 140, 20442063, https://doi.org/10.1175/MWR-D-11-00261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, W. E., D. H. Bromwich, and J. F. Carrasco, 1994: Cyclonically forced barrier winds along the Transantarctic Mountains near Ross Island. Mon. Wea. Rev., 122, 137150, https://doi.org/10.1175/1520-0493(1994)122<0137:CFBWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orr, A., T. Phillips, S. Webster, A. Elvidge, M. Weeks, S. Hosking, and J. Turner, 2014: Met Office Unified Model high-resolution simulations of a strong wind events in Antarctica. Quart. J. Roy. Meteor. Soc., 140, 22872297, https://doi.org/10.1002/qj.2296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1993: A nonlinear dynamical perspective on climate change. Weather, 48, 314326, https://doi.org/10.1002/j.1477-8696.1993.tb05802.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1999: A nonlinear dynamical perspective on climate prediction. J. Climate, 12, 575591, https://doi.org/10.1175/1520-0442(1999)012<0575:ANDPOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and J. J. Cassano, 2001: Forcing of the wintertime Antarctic boundary layer winds from the NCEP–NCAR global reanalysis. J. Appl. Meteor., 40, 810821, https://doi.org/10.1175/1520-0450(2001)040<0810:FOTWAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and J. J. Cassano, 2003: The role of katabatic winds on the Antarctic surface wind regime. Mon. Wea. Rev., 131, 317333, https://doi.org/10.1175/1520-0493(2003)131<0317:TROKWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., A. J. Monaghan, A. M. Cayette, D. H. Bromwich, Y. H. Kuo, and K. W. Manning, 2003: Real-time mesoscale modeling over Antarctica: The Antarctic Mesoscale Prediction System. Bull. Amer. Meteor. Soc., 84, 15331545, https://doi.org/10.1175/BAMS-84-11-1533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., J.-N. Thépaut, and P. Courtier, 1998: Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Quart. J. Roy. Meteor. Soc., 124, 18611887, https://doi.org/10.1002/qj.49712455005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf, and A. J. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 11431170, https://doi.org/10.1256/smsqj.56414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigo, J. S., J.-M. Buchlin, J. van Beeck, J. T. M. Lenaerts, and M. R. van den Broeke, 2013: Evaluation of the Antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations. Climate Dyn., 40, 353376, https://doi.org/10.1007/s00382-012-1396-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speirs, J. C., D. F. Steinhoff, H. A. McGowan, D. H. Bromwich, and A. J. Monaghan, 2010: Foehn winds in the McMurdo dry valleys, Antarctica: The origin of extreme warming events. J. Climate, 23, 35773598, https://doi.org/10.1175/2010JCLI3382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459462, https://doi.org/10.1038/nature07669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinhoff, D. F., D. H. Bromwich, M. Lambertson, S. L. Knuth, and M. A. Lazzara, 2008: A dynamical investigation of the May 2004 McMurdo Antarctica severe wind event using AMIPS. Mon. Wea. Rev., 136, 726, https://doi.org/10.1175/2007MWR1999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinhoff, D. F., S. Chaudhuri, and D. H. Bromwich, 2009: A case study of a Ross Ice Shelf air stream event: A new perspective. Mon. Wea. Rev., 137, 40304046, https://doi.org/10.1175/2009MWR2880.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomikawa, Y., and Coauthors, 2015: Vertical wind disturbances during a strong wind event observed by the PANSY radar at Syowa station, Antarctica. Mon. Wea. Rev., 143, 18041821, https://doi.org/10.1175/MWR-D-14-00289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. A. Lachlan-Cope, G. J. Marshall, S. Pendlebury, and N. Adams, 2001: An extreme wind event at Casey Station, Antarctica. J. Geophys. Res., 106, 72917311, https://doi.org/10.1029/2000JD900544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., S. N. Chenoli, A. abu Samah, G. Marshall, T. Phillips, and A. Orr, 2009: Strong wind events in the Antarctic. J. Geophys. Res., 114, D18103, https://doi.org/10.1029/2008JD011642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Reanalysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • van As, D., M. R. van den Broeke, and M. Helsen, 2007: Strong-wind events and their impact on the near-surface climate at Kohnen Station on the Antarctic Plateau. Antarct. Sci., 19, 507519, https://doi.org/10.1017/S095410200700065X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., and N. P. M. van Lipzig, 2003: Factors controlling the near-surface wind field in Antarctica. Mon. Wea. Rev., 131, 733743, https://doi.org/10.1175/1520-0493(2003)131<0733:FCTNSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Lipzig, N. P., M. E. van Meijgaard, and J. Oerlemans, 2002: The spatial and temporal variability of the surface mass balance in Antarctica: Results from a regional atmospheric climate model. Int. J. Climatol., 22, 11971217, https://doi.org/10.1002/joc.798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

  • Yu, L., S. Zhong, W. E. Heilman, and X. Bian, 2017: A comparison of the effects of El Niño and El Niño Modoki on subdaily extreme precipitation occurrences across the contiguous United States. J. Geophys. Res., 122, 74017415, https://doi.org/10.1002/2017JD026683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, M. Zhou, B. Sun, and D. H. Lenschow, 2018: Antarctic summer sea ice trend in the context of high-latitude atmospheric circulation changes. J. Climate, 31, 39093920, https://doi.org/10.1175/JCLI-D-17-0739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., J. Li, R. T. Clark, and H. C. Nnamchi, 2013: Simulation and projection of the Southern Hemisphere annular mode in CMIP5 models. J. Climate, 26, 98609879, https://doi.org/10.1175/JCLI-D-13-00204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1094 306 54
PDF Downloads 1063 245 28