• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellucci, A., S. Gualdi, and A. Navarra, 2010: The double-ITCZ syndrome in coupled general circulation models: The role of large-scale vertical circulation regimes. J. Climate, 23, 11271145, https://doi.org/10.1175/2009JCLI3002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breugem, W. P., P. Chang, C. J. Jang, J. Mignot, and W. Hazeleger, 2008: Barrier layers and tropical Atlantic SST biases in coupled GCMs. Tellus, 60A, 885897, https://doi.org/10.1111/j.1600-0870.2008.00343.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cabos, W., and Coauthors, 2017: The South Atlantic Anticyclone as a key player for the representation of the tropical Atlantic climate in coupled climate models. Climate Dyn., 48, 40514069, https://doi.org/10.1007/s00382-016-3319-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W., J. C. Chiang, and D. Zhang, 2013: Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 71877197, https://doi.org/10.1175/JCLI-D-12-00496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, https://doi.org/10.1016/j.ocemod.2013.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davey, M., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18, 403420, https://doi.org/10.1007/s00382-001-0188-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diakhaté, M., A. Lazar, G. de Coëtlogon, and A. T. Gaye, 2018: Do SST gradients drive the monthly climatological surface wind convergence over the tropical Atlantic? Int. J. Climatol., 38, e955e965, https://doi.org/10.1002/joc.5422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, M., and G. Lohmann, 2007: A hemispheric mechanism for the Atlantic multidecadal oscillation. J. Climate, 20, 27062719, https://doi.org/10.1175/JCLI4174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., R. J. Greatbatch, M. Latif, and W. Park, 2015: The impact of sea surface temperature bias on equatorial Atlantic interannual variability in partially coupled model experiments. Geophys. Res. Lett., 42, 55405546, https://doi.org/10.1002/2015GL064799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dippe, T., R. J. Greatbatch, and H. Ding, 2018: On the relationship between Atlantic Niño variability and ocean dynamics. Climate Dyn., 51, 597612, https://doi.org/10.1007/s00382-017-3943-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engström, A., F. A. M. Bender, and J. Karlsson, 2014: Improved representation of marine stratocumulus cloud shortwave radiative properties in the CMIP5 climate models. J. Climate, 27, 61756188, https://doi.org/10.1175/JCLI-D-13-00755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

    • Search Google Scholar
    • Export Citation
  • Gordon, H. B., S. O’Farrell, M. Collier, M. Dix, L. Rotstayn, E. Kowalczyk, T. Hirst, and I. Watterson, 2010: The CSIRO Mk3.5 climate model. CAWCR Tech. Rep. 021, 74 pp., https://www.cawcr.gov.au/technical-reports/CTR_021.pdf.

  • Goubanova, K., E. Sanchez-Gomez, C. Frauen, and A. Voldoire, 2019: Respective roles of remote and local wind stress forcings in the development of warm SST errors in the South-Eastern Tropical Atlantic in a coupled high-resolution model. Climate Dyn., 52, 13591382, https://doi.org/10.1007/s00382-018-4197-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hourdin, F., A. Găinusă-Bogdan, P. Braconnot, J. L. Dufresne, A. K. Traore, and C. Rio, 2015: Air moisture control on ocean surface temperature, hidden key to the warm bias enigma. Geophys. Res. Lett., 42, 10 88510 893, https://doi.org/10.1002/2015GL066764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., B. Huang, and K. Pegion, 2008: Low cloud errors over the southeastern Atlantic in the NCEP CFS and their association with lower-tropospheric stability and air–sea interaction. J. Geophys. Res., 113, D12114, https://doi.org/10.1029/2007JD009514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., Z.-Z. Hu, and B. Jha, 2007: Evolution of model systematic errors in the tropical Atlantic basin from coupled climate hindcasts. Climate Dyn., 28, 661682, https://doi.org/10.1007/s00382-006-0223-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, https://doi.org/10.1073/pnas.1213302110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and Coauthors, 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res., 117, D14105, https://doi.org/10.1029/2011JD017237.

    • Search Google Scholar
    • Export Citation
  • Kajtar, J. B., A. Santoso, S. McGregor, M. H. England, and Z. Baillie, 2018: Model under-representation of decadal Pacific trade wind trends and its link to tropical Atlantic bias. Climate Dyn., 50, 14711484, https://doi.org/10.1007/s00382-017-3699-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, J., G. Svensson, and H. Rodhe, 2008: Cloud radiative forcing of subtropical low level clouds in global models. Climate Dyn., 30, 779788, https://doi.org/10.1007/s00382-007-0322-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koseki, S., N. Keenlyside, T. Demissie, T. Toniazzo, F. Counillon, I. Bethke, M. Ilicak, and M.-L. Shen, 2018: Causes of the large warm bias in the Angola-Benguela Frontal Zone in the Norwegian Earth System Model. Climate Dyn., 50, 46514670, https://doi.org/10.1007/s00382-017-3896-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauer, A., and K. Hamilton, 2013: Simulating clouds with global climate models: A comparison of CMIP5 results with CMIP3 and satellite data. J. Climate, 26, 38233845, https://doi.org/10.1175/JCLI-D-12-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., T. Qian, and T. Shinoda, 2014: Stratocumulus clouds in southeastern Pacific simulated by eight CMIP5–CFMIP global climate models. J. Climate, 27, 30003022, https://doi.org/10.1175/JCLI-D-13-00376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., Z. Liu, J. Cheng, and H. Hu, 2015: On the stability of the Atlantic meridional overturning circulation during the last deglaciation. Climate Dyn., 44, 12571275, https://doi.org/10.1007/s00382-014-2153-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-the-atmosphere (TOA) edition 4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Search Google Scholar
    • Export Citation
  • Lu, R., and B. Dong, 2008: Response of the Asian summer monsoon to weakening of Atlantic thermohaline circulation. Adv. Atmos. Sci., 25, 723736, https://doi.org/10.1007/s00376-008-0723-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, C.-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9, 16351645, https://doi.org/10.1175/1520-0442(1996)009<1635:PSCATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., M. F. Stuecker, J. B. Kajtar, M. H. England, and M. Collins, 2018: Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nat. Climate Change, 8, 493498, https://doi.org/10.1038/s41558-018-0163-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838, https://doi.org/10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 2016: Can reducing the incoming energy flux over the Southern Ocean in a CGCM improve its simulation of tropical climate? Geophys. Res. Lett., 43, 11 05711 063, https://doi.org/10.1002/2016GL071150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., and A. A. Scaife, 2014: Naturally forced multidecadal variability of the Atlantic meridional overturning circulation. Climate Dyn., 42, 13471362, https://doi.org/10.1007/s00382-013-2028-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., D. L. Hodson, J. I. Robson, R. T. Sutton, R. A. Wood, and J. A. Hunt, 2015: Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys. Res. Lett., 42, 59265934, https://doi.org/10.1002/2015GL064360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nnamchi, H. C., J. Li, F. Kucharski, I. S. Kang, N. S. Keenlyside, P. Chang, and R. Farneti, 2015: Thermodynamic controls of the Atlantic Niño. Nat. Commun., 6, 8895, https://doi.org/10.1038/ncomms9895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oueslati, B., and G. Bellon, 2015: The double ITCZ bias in CMIP5 models: Interaction between SST, large-scale circulation and precipitation. Climate Dyn., 44, 585607, https://doi.org/10.1007/s00382-015-2468-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persechino, A., R. Marsh, B. Sinha, A. P. Megann, A. T. Blaker, and A. L. New, 2012: Decadal-timescale changes of the Atlantic overturning circulation and climate in a coupled climate model with a hybrid-coordinate ocean component. Climate Dyn., 39, 10211042, https://doi.org/10.1007/s00382-012-1432-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., 2015: Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward. Wiley Interdiscip. Rev.: Climate Change, 6, 345358, https://doi.org/10.1002/wcc.338.

    • Search Google Scholar
    • Export Citation
  • Richter, I., and S.-P. Xie, 2008: On the origin of equatorial Atlantic biases in coupled general circulation models. Climate Dyn., 31, 587598, https://doi.org/10.1007/s00382-008-0364-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., S.-P. Xie, A. T. Wittenberg, and Y. Masumoto, 2012: Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation. Climate Dyn., 38, 9851001, https://doi.org/10.1007/s00382-011-1038-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., S.-P. Xie, S. K. Behera, T. Doi, and Y. Masumoto, 2014: Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Climate Dyn., 42, 171188, https://doi.org/10.1007/s00382-012-1624-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez-Fonseca, B., I. Polo, J. García-Serrano, T. Losada, E. Mohino, C. R. Mechoso, and F. Kucharski, 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, https://doi.org/10.1029/2009GL040048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 27852810, https://doi.org/10.1175/JCLI-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, W., T. Doi, K. J. Richards, and Y. Masumoto, 2014: Impact of the equatorial Atlantic sea surface temperature on the tropical Pacific in a CGCM. Climate Dyn., 43, 25392552, https://doi.org/10.1007/s00382-014-2072-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., W. Huang, B. Wang, Z. Yang, X. He, and T. Qiu, 2018: Origin of warm SST bias over the Atlantic cold tongue in the coupled climate model FGOALS-g2. Atmosphere, 9, 275, https://doi.org/10.3390/atmos9070275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, Q., Z. Song, and F. Qiao, 2015: Assessment of sea ice simulations in the CMIP5 models. Cryosphere, 9, 399409, https://doi.org/10.5194/tc-9-399-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Z., S.-K. Lee, C. Wang, B. P. Kirtman, and F. Qiao, 2015: Contributions of the atmosphere–land and ocean–sea ice model components to the tropical Atlantic SST bias in CESM1. Ocean Modell., 96, 280290, https://doi.org/10.1016/j.ocemod.2015.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites; Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc., 94, 10311049, https://doi.org/10.1175/BAMS-D-12-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takatama, K., S. Minobe, M. Inatsu, and R. J. Small, 2012: Diagnostics for near- surface wind convergence/divergence response to the Gulf Stream in a regional atmospheric model. Atmos. Sci. Lett., 13, 1621, https://doi.org/10.1002/asl.355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 48994919, https://doi.org/10.1175/JCLI4283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, https://doi.org/10.1029/2011GL048712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and S. Woolnough, 2014: Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Climate Dyn., 43, 28892913, https://doi.org/10.1007/s00382-013-1691-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 14731484, https://doi.org/10.1175/JCLI-D-12-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., M. Claudon, G. Caniaux, H. Giordani, and R. Roehrig, 2014: Are atmospheric biases responsible for the tropical Atlantic SST biases in the CNRM-CM5 coupled model? Climate Dyn., 43, 29632984, https://doi.org/10.1007/s00382-013-2036-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 2003: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wang, C., L. Zhang, S. K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, https://doi.org/10.1038/nclimate2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., C. Li, C. Yang, and S. P. Xie, 2008: Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J. Climate, 21, 30023019, https://doi.org/10.1175/2007JCLI1858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., M. Zhao, I. M. Held, and J. C. Golaz, 2017: Predicting the severity of spurious “double ITCZ” problem in CMIP5 coupled models from AMIP simulations. Geophys. Res. Lett., 44, 15201527, https://doi.org/10.1002/2016GL071992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., P. Chang, I. Richter, and G. Tang, 2014: Diagnosing southeast tropical Atlantic SST and ocean circulation biases in the CMIP5 ensemble. Climate Dyn., 43, 31233145, https://doi.org/10.1007/s00382-014-2247-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zermeño-Diaz, D. M., and C. Zhang, 2013: Possible root causes of surface westerly biases over the equatorial Atlantic in global climate models. J. Climate, 26, 81548168, https://doi.org/10.1175/JCLI-D-12-00226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans, 118, 57725791, https://doi.org/10.1002/jgrc.20390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., C. Wang, Z. Song, and S. K. Lee, 2014: Remote effect of the model cold bias in the tropical North Atlantic on the warm bias in the tropical southeastern Pacific. J. Adv. Model. Earth Syst., 6, 10161026, https://doi.org/10.1002/2014MS000338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2007: Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic. Geophys. Res. Lett., 34, L12713, https://doi.org/10.1029/2007GL030225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C., Z. Liu, and S. Gu, 2018: Model bias for South Atlantic Antarctic intermediate water in CMIP5. Climate Dyn., 50, 36133624, https://doi.org/10.1007/s00382-017-3828-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2016: Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific Oceans: The U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group. Bull. Amer. Meteor. Soc., 97, 23052328, https://doi.org/10.1175/BAMS-D-15-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 233 87 5
PDF Downloads 181 103 3

Relationships among Intermodel Spread and Biases in Tropical Atlantic Sea Surface Temperatures

View More View Less
  • 1 Department of Physics of the Earth and Astrophysics, Universidad Complutense de Madrid, Madrid, Spain
  • | 2 Department of Physics of the Earth and Astrophysics, Universidad Complutense de Madrid, and Instituto de Geociencias, Madrid, Spain
  • | 3 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 4 Department of Physics of the Earth and Astrophysics, Universidad Complutense de Madrid, Madrid, Spain
  • | 5 Department of Physics of the Earth and Astrophysics, Universidad Complutense de Madrid, Madrid, Spain, and Department of Meteorology, University of Reading, Reading, United Kingdom
Restricted access

Abstract

State-of-the-art general circulation models show important systematic errors in their simulation of sea surface temperatures (SST), especially in the tropical Atlantic. In this work the spread in the simulation of climatological SST in the tropical Atlantic by 24 CMIP5 models is examined, and its relationship with the mean systematic biases in the region is explored. The modes of intermodel variability are estimated by applying principal component (PC) analysis to the SSTs in the region 70°W–20°E, 20°S–20°N. The intermodel variability is approximately explained by the first three modes. The first mode is related to warmer SSTs in the basin, shows worldwide connections with same-signed loads over most of the tropics, and is connected with lower low cloud cover over the eastern parts of the subtropical oceans. The second mode is restricted to the Atlantic, where it shows negative and positive loads to the north and south of the equator, respectively, and is connected to a too weak Atlantic meridional overturning circulation (AMOC). The third mode is related to the double intertropical convergence zone bias in the Pacific and to an interhemispheric asymmetry in the net radiation at the top of the atmosphere. The structure of the second mode is closer to the mean bias than that of the others in the tropical Atlantic, suggesting that model difficulties with the AMOC contribute to the regional biases.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0846.1.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elsa Mohino, emohino@ucm.es

Abstract

State-of-the-art general circulation models show important systematic errors in their simulation of sea surface temperatures (SST), especially in the tropical Atlantic. In this work the spread in the simulation of climatological SST in the tropical Atlantic by 24 CMIP5 models is examined, and its relationship with the mean systematic biases in the region is explored. The modes of intermodel variability are estimated by applying principal component (PC) analysis to the SSTs in the region 70°W–20°E, 20°S–20°N. The intermodel variability is approximately explained by the first three modes. The first mode is related to warmer SSTs in the basin, shows worldwide connections with same-signed loads over most of the tropics, and is connected with lower low cloud cover over the eastern parts of the subtropical oceans. The second mode is restricted to the Atlantic, where it shows negative and positive loads to the north and south of the equator, respectively, and is connected to a too weak Atlantic meridional overturning circulation (AMOC). The third mode is related to the double intertropical convergence zone bias in the Pacific and to an interhemispheric asymmetry in the net radiation at the top of the atmosphere. The structure of the second mode is closer to the mean bias than that of the others in the tropical Atlantic, suggesting that model difficulties with the AMOC contribute to the regional biases.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0846.1.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elsa Mohino, emohino@ucm.es

Supplementary Materials

    • Supplemental Materials (PDF 2.43 MB)
Save