The Atmospheric Response to Positive IPV, Positive AMV, and Their Combination in Boreal Winter

Dillon Elsbury Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Dillon Elsbury in
Current site
Google Scholar
PubMed
Close
,
Yannick Peings Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Yannick Peings in
Current site
Google Scholar
PubMed
Close
,
David Saint-Martin CNRM-GMGEC, Météo-France, Toulouse, France

Search for other papers by David Saint-Martin in
Current site
Google Scholar
PubMed
Close
,
Hervé Douville CNRM-GMGEC, Météo-France, Toulouse, France

Search for other papers by Hervé Douville in
Current site
Google Scholar
PubMed
Close
, and
Gudrun Magnusdottir Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Gudrun Magnusdottir in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The interdecadal Pacific oscillation (hereafter termed IPV, using “variability” in lieu of “oscillation”) and the Atlantic multidecadal oscillation (hereafter AMV, similar to IPV) are regulators of global mean temperature, large-scale atmospheric circulation, regional temperature and precipitation, and related extreme events. Despite a growing recognition of their importance, the combined influence of these modes of low-frequency sea surface temperature (SST) variability remains elusive given the short instrumental record and the difficulty of coupled climate models to simulate them satisfactorily. In this study, idealized simulations with two atmospheric global climate models (AGCMs) are used to show a partial cancellation of the North Pacific atmospheric response to positive IPV (i.e., deeper Aleutian low) by the concurrent positive phase of the AMV. This effect arises from a modulation of the interbasin Walker circulation that weakens deep convection in the western Pacific and the associated Rossby wave train into the northern extratropics. The weaker Aleutian low response is associated with less upward wave activity flux in the North Pacific; however, the associated stratospheric jet weakening is similar to when the +IPV alone forces the vortex, as additional upward wave activity flux over Siberia makes up the difference. While comparable warming of the polar stratosphere is found when the positive AMV is included with the positive IPV, the downward propagation of the stratospheric response is significantly reduced, which has implications for the associated surface temperature extremes. The robust anticorrelation between the positive IPV and positive AMV signals over the North Pacific and their lack of additivity highlight the need to consider the IPV–AMV interplay for anticipating decadal changes in mean climate and extreme events in the Northern Hemisphere.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0422.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dillon Elsbury, delsbury@uci.edu

Abstract

The interdecadal Pacific oscillation (hereafter termed IPV, using “variability” in lieu of “oscillation”) and the Atlantic multidecadal oscillation (hereafter AMV, similar to IPV) are regulators of global mean temperature, large-scale atmospheric circulation, regional temperature and precipitation, and related extreme events. Despite a growing recognition of their importance, the combined influence of these modes of low-frequency sea surface temperature (SST) variability remains elusive given the short instrumental record and the difficulty of coupled climate models to simulate them satisfactorily. In this study, idealized simulations with two atmospheric global climate models (AGCMs) are used to show a partial cancellation of the North Pacific atmospheric response to positive IPV (i.e., deeper Aleutian low) by the concurrent positive phase of the AMV. This effect arises from a modulation of the interbasin Walker circulation that weakens deep convection in the western Pacific and the associated Rossby wave train into the northern extratropics. The weaker Aleutian low response is associated with less upward wave activity flux in the North Pacific; however, the associated stratospheric jet weakening is similar to when the +IPV alone forces the vortex, as additional upward wave activity flux over Siberia makes up the difference. While comparable warming of the polar stratosphere is found when the positive AMV is included with the positive IPV, the downward propagation of the stratospheric response is significantly reduced, which has implications for the associated surface temperature extremes. The robust anticorrelation between the positive IPV and positive AMV signals over the North Pacific and their lack of additivity highlight the need to consider the IPV–AMV interplay for anticipating decadal changes in mean climate and extreme events in the Northern Hemisphere.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0422.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dillon Elsbury, delsbury@uci.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.01 MB)
Save
  • Andrews, D. G., C. B. Leovy, and J. R. Holton, 1987: Middle Atmosphere Dynamics, International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, https://doi.org/10.1029/1999JD900445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and Coauthors, 2016: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev., 9, 37513777, https://doi.org/10.5194/gmd-9-3751-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, https://doi.org/10.1038/nature10946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., J. P. Sjoberg, D. J. Seidel, and K. H. Rosenlof, 2017: A sudden stratospheric warming compendium. Earth Syst. Sci. Data, 9, 6376, https://doi.org/10.5194/essd-9-63-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., and E. Manzini, 2009: Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Climate, 22, 12231238, https://doi.org/10.1175/2008JCLI2549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, L. N. Murphy, and K. Bellomo, 2017: Low-pass filtering, heat flux, and Atlantic multidecadal variability. J. Climate, 30, 75297553, https://doi.org/10.1175/JCLI-D-16-0810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., Y. Kushnir, E. Hawkins, A. Pirani, F. Kucharski, I. Kang, and N. Caltabiano, 2017: Decadal climate variability and predictability: Challenges and opportunities. Bull. Amer. Meteor. Soc., 99, 479490, https://doi.org/10.1175/BAMS-D-16-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chafik, L., S. Häkkinen, M. H. England, J. A. Carton, S. Nigam, A. Ruiz-Barradas, A. Hannachi, and L. Miller, 2016: Global linkages originating from decadal oceanic variability in the subpolar North Atlantic. Geophys. Res. Lett., 43, 10 90910 919, https://doi.org/10.1002/2016GL071134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton-Perez, A. J., and L. M. Polvani, 2011: Corrigendum. J. Climate,24, 5951–5951, https://doi.org/10.1175/JCLI-D-11-00348.1.

    • Crossref
    • Export Citation
  • Chen, P., and W. A. Robinson, 1992: Propagation of planetary waves between the troposphere and stratosphere. J. Atmos. Sci., 49, 25332545, https://doi.org/10.1175/1520-0469(1992)049<2533:POPWBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., T. Mochizuki, A. Timmermann, M. Kimoto, and M. Watanabe, 2016: Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophys. Res. Lett., 43, 71437151, https://doi.org/10.1002/2016GL069544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2001: Downward propagation of zonal mean wind anomalies from the stratosphere to the troposphere: Model and reanalysis. J. Geophys. Res., 106, 27 30727 322, https://doi.org/10.1029/2000JD000214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A., K. Bellomo, L. N. Murphy, M. A. Cane, T. Mauritsen, G. Radel, and B. Stevens, 2015: The Atlantic multidecadal oscillation without a role for ocean circulation. Science, 350, 320324, https://doi.org/10.1126/science.aab3980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2016: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modell., 97, 6590, https://doi.org/10.1016/j.ocemod.2015.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., J. Von Hardenberg, and S. Corti, 2015: Tropical origin for the impacts of the Atlantic multidecadal variability on the Euro-Atlantic climate. Environ. Res. Lett., 10, 094010, https://doi.org/10.1088/1748-9326/10/9/094010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 19932011, https://doi.org/10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., F. Zeng, L. Zhang, R. Zhang, G. A. Vecchi, and X. Yang, 2017: The central role of ocean dynamics in connecting the North Atlantic Oscillation to the Atlantic multidecadal oscillation. J. Climate, 30, 37893805, https://doi.org/10.1175/JCLI-D-16-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and A. Dai, 2015: The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Climate Dyn., 45, 26672681, https://doi.org/10.1007/s00382-015-2500-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T., C. P. F. Hsu, and M. E. McIntyre, 1981: Some Eulerian and Lagrangian diagnostics for a model stratospheric warming. J. Atmos. Sci., 38, 819844, https://doi.org/10.1175/1520-0469(1981)038<0819:SEALDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., Jr., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., and P. J. Kushner, 2011: The role of linear interference in the annular mode response to tropical SST forcing. J. Climate, 24, 778794, https://doi.org/10.1175/2010JCLI3735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frajka-Williams, E., C. Beaulieu, and A. Duchez, 2017: Emerging negative Atlantic Multidecadal Oscillation index in spite of warm subtropics. Sci. Rep., 7, 11224, https://doi.org/10.1038/s41598-017-11046-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., N. Calvo, R. R. Garcia, and M. A. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res., 111, D06101, https://doi.org/10.1029/2005jd006061.

    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., C. Cassou, H. Douville, A. Giannini, and F. J. Doblas-Reyes, 2017: Revisiting the ENSO teleconnection to the tropical North Atlantic. J. Climate, 30, 69456957, https://doi.org/10.1175/JCLI-D-16-0641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., J. C. H. Chiang, M. A. Cane, Y. Kushnir, and R. Seager, 2001: The ENSO teleconnection to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J. Climate, 14, 45304544, https://doi.org/10.1175/1520-0442(2001)014<4530:TETTTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, S. T., L. J. Graumlich, J. L. Betancourt, and G. T. Pederson, 2004: A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophys. Res. Lett., 31, L12205, https://doi.org/10.1029/2004GL019932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y. G., J. Y. Choi, and J. S. Kug, 2017: The weakening of the ENSO–Indian Ocean dipole (IOD) coupling strength in recent decades. Climate Dyn., 49, 249261, https://doi.org/10.1007/s00382-016-3339-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. B. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., and Coauthors, 2017: Spatial and temporal agreement in climate model simulations of the interdecadal Pacific oscillation. Environ. Res. Lett., 12, 044011, https://doi.org/10.1088/1748-9326/aa5cc8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., T. Li, H. Xu, and S. Yang, 2017: Lessened response of boreal winter stratospheric polar vortex to El Niño in recent decades. Climate Dyn., 49, 263278, https://doi.org/10.1007/s00382-016-3340-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. van Loon, 1997: Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change at High Elevation Sites, H. F. Diaz, M. Beniston, and R. S. Bradley, Eds., Springer, 69–94.

    • Search Google Scholar
    • Export Citation
  • Jiang, P., Z. Yu, and M. R. Gautam, 2013: Pacific and Atlantic Ocean influence on the spatiotemporal variability of heavy precipitation in the western United States. Global Planet. Change, 109, 3845, https://doi.org/10.1016/j.gloplacha.2013.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joshi, M. K., and A. Rai, 2015: Combined interplay of the Atlantic multidecadal oscillation and the interdecadal Pacific oscillation on rainfall and its extremes over Indian subcontinent. Climate Dyn., 44, 33393359, https://doi.org/10.1007/s00382-014-2333-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., H.-H. No, and F. Kucharski, 2014: ENSO amplitude modulation associated with the mean SST changes in the tropical central Pacific induced by Atlantic multidecadal oscillation. J. Climate, 27, 79117920, https://doi.org/10.1175/JCLI-D-14-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, W., and E. Tziperman, 2017: More frequent sudden stratospheric warming events due to enhanced MJO forcing expected in a warmer climate. J. Climate, 30, 87278743, https://doi.org/10.1175/JCLI-D-17-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., N. Nicholls, and A. Ghazi, 1999: CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary. Weather and Climate Extremes: Changes, Variations and a Perspective from the Insurance Industry, T. R. Karl, N. Nicholls, and A. Ghazi, Eds., Springer, 3–7, https://doi.org/10.1007/978-94-015-9265-9.

    • Crossref
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, W. M., S. Yeager, P. Chang, and G. Danabasoglu, 2018: Low-frequency North Atlantic climate variability in the Community Earth System Model Large Ensemble. J. Climate, 31, 787813, https://doi.org/10.1175/JCLI-D-17-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knudsen, M. F., M.-S. Seidenkrantz, B. H. Jacobsen, and A. Kuijpers, 2011: Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nat. Commun., 2, 178, https://doi.org/10.1038/ncomms1186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knudsen, M. F., B. H. Jacobsen, M.-S. Seidenkrantz, and J. Olsen, 2014: Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age. Nat. Commun., 5, 3323, https://doi.org/10.1038/ncomms4323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kren, A. C., D. R. Marsh, A. K. Smith, and P. Pilewskie, 2016: Wintertime Northern Hemisphere response in the stratosphere to the Pacific decadal oscillation using the Whole Atmosphere Community Climate Model. J. Climate, 29, 10311049, https://doi.org/10.1175/JCLI-D-15-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. W. Thompson, and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 12121227, https://doi.org/10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., L. Guez, and P. Maury, 2012: A stochastic parameterization of non-orographic gravity waves: Formalism and impact on the equatorial stratosphere. Geophys. Res. Lett., 39, L06807, https://doi.org/10.1029/2012GL051001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubis, S. W., K. Matthes, N.-E. Omrani, N. Harnik, and S. Wahl, 2016: Influence of the quasi-biennial oscillation and sea surface temperature variability on downward wave coupling in the Northern Hemisphere. J. Atmos. Sci., 73, 19431965, https://doi.org/10.1175/JAS-D-15-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., L. M. Polvani, and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, https://doi.org/10.1029/2009GL038776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 1982: How well do we understand the dynamics of stratospheric warmings? J. Meteor. Soc. Japan, 60, 3765, https://doi.org/10.2151/jmsj1965.60.1_37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, J. M. Arblaster, J. Fasullo, and K. E. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J. Climate, 26, 72987310, https://doi.org/10.1175/JCLI-D-12-00548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and H. Teng, 2016: Initialized decadal prediction for transition to positive phase of the interdecadal Pacific oscillation. Nat. Commun., 7, 11718, https://doi.org/10.1038/ncomms11718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishii, K., H. Nakamura, and Y. J. Orsolini, 2010: Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys. Res. Lett., 37, L13805, https://doi.org/10.1029/2010GL043551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omrani, N.-E., N. S. Keenlyside, J. Bader, and E. Manzini, 2014: Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Climate Dyn., 42, 649663, https://doi.org/10.1007/s00382-013-1860-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., M. Huber, T. Woollings, and L. Zanna, 2016: The signature of low-frequency oceanic forcing in the Atlantic multidecadal oscillation. Geophys. Res. Lett., 43, 28102818, https://doi.org/10.1002/2016GL067925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otterå, O. H., M. Bentsen, H. Drange, and L. L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci., 3, 688694, https://doi.org/10.1038/ngeo955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ. Res. Lett., 9, 034018, https://doi.org/10.1088/1748-9326/9/3/034018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2016: Wintertime atmospheric response to Atlantic multidecadal variability: Dependence on stratospheric representation and ocean–atmosphere coupling. Climate Dyn., 47, 10291047, https://doi.org/10.1007/s00382-015-2887-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1981: Instability of the distorted polar night vortex: A theory of stratospheric warmings. J. Atmos. Sci., 38, 25142531, https://doi.org/10.1175/1520-0469(1981)038<2514:IOTDPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2004: Atmospheric and Ocean Circulations.MIT OpenCourseWare, Massachusetts Institute of Technology, https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-333-atmospheric-and-ocean-circulations-spring-2004/ (License: Creative Commons BY-NC-SA).

  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., L. Sun, A. H. Butler, J. H. Richter, and C. Deser, 2017: Distinguishing stratospheric sudden warmings from ENSO as key drivers of wintertime climate variability over the North Atlantic and Eurasia. J. Climate, 30, 19591969, https://doi.org/10.1175/JCLI-D-16-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 111, https://doi.org/10.1002/qj.2910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., Y. Peings, and G. Magnusdottir, 2016: Pacific influences on tropical Atlantic teleconnections to the Southern Hemisphere high latitudes. J. Climate, 29, 64256444, https://doi.org/10.1175/JCLI-D-15-0645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K., R. Neely, D. Marsh, and L. Polvani, 2014: The Specified Chemistry Whole Atmosphere Community Climate Model (SC-WACCM). J. Adv. Model. Earth Syst., 6, 883901, https://doi.org/10.1002/2014MS000346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinman, B. A., M. E. Mann, and S. K. Miller, 2015: Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347, 988991, https://doi.org/10.1126/science.1257856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., F. Kucharski, J. Li, F. Jin, I. Kang, and R. Ding, 2017: Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun., 8, 15998, https://doi.org/10.1038/ncomms15998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, https://doi.org/10.1126/science.1109496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, M., and D. L. Hartmann, 2006: Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Climate, 19, 324332, https://doi.org/10.1175/JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., and P. J. Kushner, 2015: Does external forcing interfere with the AMOC’s influence on North Atlantic sea surface temperature? J. Climate, 28, 63096323, https://doi.org/10.1175/JCLI-D-14-00664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, L., 2012: Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys. Res. Lett., 39, L19712, https://doi.org/10.1029/2012GL053046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. H. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, and H. Mukougawa, 2017: Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl. Acad. Sci. USA, 114, 62276232, https://doi.org/10.1073/pnas.1615880114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, Eds., 2017: The Climate Data Guide: Atlantic Multi-decadal Oscillation (AMO). NCAR, accessed 11 June 2018, https://climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-oscillation-amo.

  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, https://doi.org/10.1029/2007GL029683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5. 1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, https://doi.org/10.1007/s00382-011-1259-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2019: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst., https://doi.org/10.1029/2019MS001683, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2004: ENSO, Atlantic climate variability, and the Walker and Hadley circulations. The Hadley Circulation: Past, Present, and Future, H. F. Diaz and R. S. Bradley, Eds., Kluwer Academic, 173–202.

    • Crossref
    • Export Citation
  • Wang, C., S. Dong, A. T. Evan, G. R. Foltz, and S.-K. Lee, 2012: Multidecadal covariability of North Atlantic sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes. J. Climate, 25, 54045415, https://doi.org/10.1175/JCLI-D-11-00413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, P. A., A. Weisheimer, J. R. Knight, and T. N. Palmer, 2016: The role of the tropical west Pacific in the extreme Northern Hemisphere winter of 2013/2014. J. Geophys. Res., 121, 16981714, https://doi.org/10.1002/2015jd024048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, R. H., D. S. Battisti, and A. Sheshadri, 2018: Orography and the boreal winter stratosphere: The importance of the Mongolian mountains. Geophys. Res. Lett., 45, 20882096, https://doi.org/10.1002/2018GL077098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woo, S.-H., M.-K. Sung, S.-W. Son, and J.-S. Kug, 2015: Connection between weak stratospheric vortex events and the Pacific decadal oscillation. Climate Dyn., 45, 34813492, https://doi.org/10.1007/s00382-015-2551-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., T. Li, J. Hu, and X. Shen, 2017: Decadal variation of the impact of La Niña on the winter Arctic stratosphere. Adv. Atmos. Sci., 34, 679684, https://doi.org/10.1007/s00376-016-6184-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans., 118, 57725791, https://doi.org/10.1002/jgrc.20390.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 755 204 66
PDF Downloads 727 131 4