• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J. Climate, 17, 31413155, https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., and Z. Guan, 2017: A joint monsoon index for East Asian–Australian monsoons during boreal summer. Atmos. Sci. Lett., 18, 403408, https://doi.org/10.1002/asl.782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, P. Zhao, and J. Cao, 2014: Influence of two types of El Niños on the East Asian climate during boreal summer: A numerical study. Climate Dyn., 43, 469481, https://doi.org/10.1007/s00382-013-1943-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dayem, K. E., D. C. Noone, and P. Molnar, 2007: Tropical western Pacific warm pool and Maritime Continent precipitation rates and their contrasting relationships with the Walker circulation. J. Geophys. Res., 112, 151156, https://doi.org/10.1029/2006JD007870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, Z., and S. Huang, 1994: Atmospheric wave and its physical essence as revealed by changed correlation coefficients and correlation field. Acta Meteor. Sin., 8, 178186.

    • Search Google Scholar
    • Export Citation
  • Guan, Z., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, https://doi.org/10.1029/2002GL016831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., 1981: A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field. Mon. Wea. Rev., 109, 20802092, https://doi.org/10.1175/1520-0493(1981)109<2080:ARPCAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., 2004: An index measuring the interannual variation of the East Asian summer monsoon—The EAP index. Adv. Atmos. Sci., 21, 4152, https://doi.org/10.1007/BF02915679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and W. Li, 1987: Influence of heat source anomaly over the tropical western Pacific on the subtropical high over East Asia. Proc. Int. Conf. on the General Circulation of East Asia, Chengdu, China, Chinese Academy of Sciences, 4045.

  • Jin, D., Z. Guan, and W. Tang, 2013: The extreme drought event during winter–spring of 2011 in East China: Combined influences of teleconnection in midhigh latitudes and thermal forcing in Maritime Continent region. J. Climate, 26, 82108222, https://doi.org/10.1175/JCLI-D-12-00652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., Z. Guan, J. Cai, and W. Tang, 2015: Interannual variations of regional summer precipitation in mainland China and their possible relationships with different teleconnections in the past five decades. J. Meteor. Soc. Japan, 93, 265283, https://doi.org/10.2151/jmsj.2015-015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., H. Saji, and L. Huo, 2016: Recent changes in ENSO teleconnection over the western Pacific impacts the eastern China precipitation dipole. J. Climate, 29, 75877598, https://doi.org/10.1175/JCLI-D-16-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B. H., and K. J. Ha, 2015: Observed changes of global and western Pacific precipitation associated with global warming SST mode and mega-ENSO SST mode. Climate Dyn., 45, 30673075, https://doi.org/10.1007/s00382-015-2524-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, https://doi.org/10.1256/qj.05.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J. S., F. Jin, and S. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, https://doi.org/10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and Q. Zeng, 2002: A unified monsoon index. Geophys. Res. Lett., 29, 1274, https://doi.org/10.1029/2001GL013874.

  • Li, J., and Q. Zeng, 2003: A new monsoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci., 20, 299302, https://doi.org/10.1007/BF02690792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and Q. Zeng, 2005: A new monsoon index, its interannual variability and relation with monsoon precipitation (in Chinese). Climatic Environ. Res., 10, 351365.

    • Search Google Scholar
    • Export Citation
  • Li, T., 2014: Recent advance in understanding the dynamics of the Madden–Julian oscillation. J. Meteor. Res., 28, 133, https://doi.org/10.1007/s13351-014-3087-6.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Z. Chen, and G. Wu, 2003: Impacts of the onset of the Bay of Bengal monsoon on the onset of the South China Sea monsoon. Part II: Numerical experiments (in Chinese). Acta Meteor. Sin., 61, 1019.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marathe, S., K. Ashok, P. Swapna, and T. P. Sabin, 2015: Revisiting El Niño Modokis. Climate Dyn., 45, 35273545, https://doi.org/10.1007/s00382-015-2555-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., M. R. Haylock, and N. Nicholls, 2003: Relationships between the Maritime Continent heat source and the El Niño–Southern Oscillation phenomenon. J. Climate, 16, 29052914, https://doi.org/10.1175/1520-0442(2003)016<2905:RBTMCH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatra island, Indonesian Maritime Continent observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039, https://doi.org/10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, https://doi.org/10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 64, 373390, https://doi.org/10.2151/jmsj1965.64.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nur’utami, M., and R. Hidayat, 2016: Influences of IOD and ENSO to Indonesian rainfall variability: Role of atmosphere–ocean interaction in the Indo-Pacific sector. Procedia Environ. Sci., 33, 196203, https://doi.org/10.1016/j.proenv.2016.03.070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J. H., 2008: Why precipitation is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci., 65, 14281441, https://doi.org/10.1175/2007JAS2422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 196199, https://doi.org/10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1981: Obliquely rotated principal components: An improved meteorological map typing technique. J. Appl. Meteor., 20, 11451159, https://doi.org/10.1175/1520-0450(1981)020<1145:ORPCAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, https://doi.org/10.1002/joc.3370060305.

  • Saji, N., B. Goswami, P. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, D., Z. Guan, and W. Tang, 2011: Variations of OLR in Maritime Continent regions in association with droughts and floods in the upper and middle reaches of Yangtze River of China in boreal summer (in Chinese). J. Trop. Meteor., 27, 560568.

    • Search Google Scholar
    • Export Citation
  • Sukresno, B., 2010: Empirical orthogonal functions (EOF) analysis of SST variability in Indonesian water concerning with ENSO and IOD. Networking World Remote Sens., 38, 116121.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasi-geostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teo, C., T. Koh, J. C. Lo, and B. C. Bhatt, 2011: Principal component analysis of observed and modeled diurnal rainfall in the Maritime Continent. J. Climate, 24, 46624674, https://doi.org/10.1175/2011JCLI4047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakabayashi, S., and R. Kawamura, 2004: Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan. J. Meteor. Soc. Japan, 82, 15771588, https://doi.org/10.2151/jmsj.82.1577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., Z. Wen, R. Wu, Y. Guo, and Z. Chen, 2016: The mechanism of growth of the low-frequency East Asia–Pacific teleconnection and the triggering role of tropical intraseasonal oscillation. Climate Dyn., 46, 39653977, https://doi.org/10.1007/s00382-015-2815-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., Z. Guan, and D. Jin, 2018: Two new sea surface temperature anomalies indices for capturing the eastern and central equatorial Pacific type El Niño–Southern Oscillation events during boreal summer. Int. J. Climatol., 38, 40664076, https://doi.org/10.1002/joc.5552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663674, https://doi.org/10.1007/s00382-008-0394-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. H., and H. Hsu, 2009: Topographic influence on the MJO in the Maritime Continent. J. Climate, 22, 54335448, https://doi.org/10.1175/2009JCLI2825.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., and Z. Guan, 2017: Interannual variability of summertime outgoing longwave radiation over the Maritime Continent in relation to East Asian summer monsoon anomalies. J. Meteor. Res., 31, 665677, https://doi.org/10.1007/s13351-017-6178-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., and Coauthors, 2010: MJO signals in latent heating: Results from TRMM retrievals. J. Atmos. Sci., 67, 34883508, https://doi.org/10.1175/2010JAS3398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 15
PDF Downloads 76 76 28

Regional Characteristics of Interannual Variability of Summer Rainfall in the Maritime Continent and Their Related Anomalous Circulation Patterns

View More View Less
  • 1 Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, and Jiangsu Climate Center, Nanjing, China
  • 2 Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

Using the NCEP–NCAR reanalysis and Global Precipitation Climatology Project monthly rainfall, we have investigated the regional features of interannual variations of rainfall in the Maritime Continent (MC) and their related anomalous atmospheric circulation patterns during boreal summer by employing the rotated empirical orthogonal function (REOF) analysis. Our results demonstrate that the rainfall variabilities in the MC are of very striking regional characteristics. The MC is divided into four independent subregions on the basis of the leading REOF modes; these subregions are located in central-eastern Indonesia (subregion I), the oceanic area to the west of Indonesia (subregion II+V), the part of the warm pool in the equatorial western Pacific Ocean (subregion III), and Guam (subregion IV+VI).The anomalous precipitation in different subregions exhibits different variation periodicities, which are associated with different circulation patterns as a result of atmospheric response to different sea surface temperature anomaly (SSTA) patterns in the tropical Indo-Pacific sector. It is found that rainfall anomalies in subregion I are induced by the Pacific ENSO, whereas those in subregion II+V are dominated by a triple SSTA pattern with positive correlations in the MC and negative correlation centers in the tropical Pacific and tropical Indian Ocean. Rainfall anomalies in subregion III mainly resulted from an SSTA pattern with negative correlations in the eastern MC and positive correlations in the western equatorial Pacific east of the MC. A horseshoe SSTA pattern in the central Pacific is found to affect the precipitation anomalies in subregion IV+VI. All of the results of this study are helpful for us to better understand both the climate variations in the MC and monsoon variations in East Asia.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhaoyong Guan, guanzy@nuist.edu.cn; Qi Xu, xqaaron@163.com

Abstract

Using the NCEP–NCAR reanalysis and Global Precipitation Climatology Project monthly rainfall, we have investigated the regional features of interannual variations of rainfall in the Maritime Continent (MC) and their related anomalous atmospheric circulation patterns during boreal summer by employing the rotated empirical orthogonal function (REOF) analysis. Our results demonstrate that the rainfall variabilities in the MC are of very striking regional characteristics. The MC is divided into four independent subregions on the basis of the leading REOF modes; these subregions are located in central-eastern Indonesia (subregion I), the oceanic area to the west of Indonesia (subregion II+V), the part of the warm pool in the equatorial western Pacific Ocean (subregion III), and Guam (subregion IV+VI).The anomalous precipitation in different subregions exhibits different variation periodicities, which are associated with different circulation patterns as a result of atmospheric response to different sea surface temperature anomaly (SSTA) patterns in the tropical Indo-Pacific sector. It is found that rainfall anomalies in subregion I are induced by the Pacific ENSO, whereas those in subregion II+V are dominated by a triple SSTA pattern with positive correlations in the MC and negative correlation centers in the tropical Pacific and tropical Indian Ocean. Rainfall anomalies in subregion III mainly resulted from an SSTA pattern with negative correlations in the eastern MC and positive correlations in the western equatorial Pacific east of the MC. A horseshoe SSTA pattern in the central Pacific is found to affect the precipitation anomalies in subregion IV+VI. All of the results of this study are helpful for us to better understand both the climate variations in the MC and monsoon variations in East Asia.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhaoyong Guan, guanzy@nuist.edu.cn; Qi Xu, xqaaron@163.com
Save