Linkages between the South and East Asian Monsoon Water Vapor Transport during Boreal Summer

Yong Liu Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Yong Liu in
Current site
Google Scholar
PubMed
Close
and
Ronghui Huang Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, and Institute of Earth Sciences, University of Chinese Academy of Sciences, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Ronghui Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study provides a water vapor transport (WVT) perspective on the linkages between the South Asian and East Asian summer monsoons (SASM and EASM) and indicates two robustly coupled modes of the vertical integrated WVT (VIWVT) over the two monsoons that accounts for above 90% of the total squared covariance fraction. The first coupled mode [singular value decomposition mode 1 (SVD1 mode)] depicts a meridional linkage between the meridional dipole VIWVT anomalies over both the SASM and EASM, while the second coupled mode (SVD2 mode) illustrates a zonal connection of an anomalous cyclonic/anticyclonic VIWVT over the SASM and a zonal wavelike VIWVT over the EASM. The SVD1 mode is linked through the anomalous subtropical high over the western North Pacific (WNPSH) and is primarily associated with the transition phase of El Niño/La Niña (ENSO) and simultaneous Indian Ocean basin mode (IOBM) SST warming/cooling. The meridional connection of the VIWVT in the SVD1 mode experienced a clear intensification since the late 1970s that may be attributed to the strengthened impacts of the ENSO/IOBM on the EASM and SASM after the late 1970s. The SVD2 mode is connected by the circumglobal teleconnection (CGT) pattern and related to the developing phase of ENSO and summer North Atlantic tripole (NAT) SST anomalies. The zonal VIWVT connection in SVD2 mode is strongly modulated by the SASM–CGT connections and reveals significant weakening since the late 1970s but reintensifies after the early 1990s. This may be associated with the weakened ENSO–SASM relationship after the late 1970s and interdecadal decreasing of the all Indian summer rainfall since the early 1990s.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0498.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 1 July 2019 to correct the first author’s name, which was mistakenly reversed when originally published.

Corresponding author: Yong Liu, liuyong@mail.iap.ac.cn

Abstract

This study provides a water vapor transport (WVT) perspective on the linkages between the South Asian and East Asian summer monsoons (SASM and EASM) and indicates two robustly coupled modes of the vertical integrated WVT (VIWVT) over the two monsoons that accounts for above 90% of the total squared covariance fraction. The first coupled mode [singular value decomposition mode 1 (SVD1 mode)] depicts a meridional linkage between the meridional dipole VIWVT anomalies over both the SASM and EASM, while the second coupled mode (SVD2 mode) illustrates a zonal connection of an anomalous cyclonic/anticyclonic VIWVT over the SASM and a zonal wavelike VIWVT over the EASM. The SVD1 mode is linked through the anomalous subtropical high over the western North Pacific (WNPSH) and is primarily associated with the transition phase of El Niño/La Niña (ENSO) and simultaneous Indian Ocean basin mode (IOBM) SST warming/cooling. The meridional connection of the VIWVT in the SVD1 mode experienced a clear intensification since the late 1970s that may be attributed to the strengthened impacts of the ENSO/IOBM on the EASM and SASM after the late 1970s. The SVD2 mode is connected by the circumglobal teleconnection (CGT) pattern and related to the developing phase of ENSO and summer North Atlantic tripole (NAT) SST anomalies. The zonal VIWVT connection in SVD2 mode is strongly modulated by the SASM–CGT connections and reveals significant weakening since the late 1970s but reintensifies after the early 1990s. This may be associated with the weakened ENSO–SASM relationship after the late 1970s and interdecadal decreasing of the all Indian summer rainfall since the early 1990s.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0498.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 1 July 2019 to correct the first author’s name, which was mistakenly reversed when originally published.

Corresponding author: Yong Liu, liuyong@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.05 MB)
Save
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-S., and Coauthors, 2014: A study of teleconnection between the South Asian and East Asian monsoons: Comparison of summer monsoon precipitation of Nepal and South Korea. J. Environ. Sci. Int., 23, 17191729, https://doi.org/10.5322/JESI.2014.23.10.1719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., H. S. Chaudhari, C. Gnanaseelan, A. Parekh, A. S. Rao, P. Sreenivas, S. Pokhrel, and P. Singh, 2014a: Summer monsoon circulation and precipitation over the tropical Indian Ocean during ENSO in the NCEP Climate Forecast System. Climate Dyn., 42, 19251947, https://doi.org/10.1007/s00382-013-1826-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., A. Parekh, C. Gnanaseelan, and P. Sreenivas, 2014b: Inter-decadal modulation of ENSO teleconnections to the Indian Ocean in a coupled model: Special emphasis on decay phase of El Niño. Global Planet. Change, 112, 3340, https://doi.org/10.1016/j.gloplacha.2013.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. A., I. Fung, and C. Risi, 2015: Coupling of South and East Asian monsoon precipitation in July–August. J. Climate, 28, 43304356, https://doi.org/10.1175/JCLI-D-14-00393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., K. J. Ha, and J. Li, 2010: Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Climate Dyn., 34, 10591071, https://doi.org/10.1007/s00382-009-0555-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., 2007: The variability of the Asian summer monsoon. J. Meteor. Soc. Japan, 85B, 2154, https://doi.org/10.2151/jmsj.85B.21.

  • Ding, Y., and Y.-Y. Liu, 2008: A study of the teleconnections in the Asian-Pacific monsoon regions. Acta Meteor. Sin., 22, 404417.

  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., Y.-W. Seo, J.-Y. Lee, R. H. Kripalani, and K.-S. Yun, 2017: Linkages between the South and East Asian summer monsoons: A review and revisit. Climate Dyn., 51, 42074227, https://doi.org/10.1007/s00382-017-3773-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., and D. Gong, 2002: Interdecadal change in western Pacific subtropical high and climatic effects. J. Geogr. Sci., 12, 202209, https://doi.org/10.1007/BF02837475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, N., and M. Takahashi, 2012: A tripolar pattern as an internal mode of the East Asian summer monsoon. Climate Dyn., 39, 22192238, https://doi.org/10.1007/s00382-012-1416-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, and R. Wu, 2013: A strengthened influence of ENSO on August high temperature extremes over the southern Yangtze River valley since the late 1980s. J. Climate, 26, 22052221, https://doi.org/10.1175/JCLI-D-12-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., R. Wu, J. L. Kinter, and S. Yang, 2005: Connection of summer rainfall variations in South and East Asia: Role of El Niño–Southern Oscillation. Int. J. Climatol., 25, 12791289, https://doi.org/10.1002/joc.1159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., Y. Liu, and R. Huang, 2011: The interannual variability of summer rainfall in the arid and semiarid regions of northern China and its association with the Northern Hemisphere circumglobal teleconnection. Adv. Atmos. Sci., 28, 257268, https://doi.org/10.1007/s00376-010-9225-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and W. Li, 1987: Influence of the heat source anomaly over the western tropical Pacific on the subtropical high over East Asia (in Chinese). Proc. Int. Conf. on the General Circulation of East Asia, Chengdu, China, Institute of Atmospheric Physics and Lanzhou Institute of Plateau Atmospheric Physics, Chinese Academy of Sciences, 40–51.

  • Huang, R., L. Zhou, and W. Chen, 2003: The progresses of recent studies on the variabilities of the East Asian monsoon and their causes. Adv. Atmos. Sci., 20, 5569, https://doi.org/10.1007/BF03342050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., Y. Liu, and T. Feng, 2013: Interdecadal change of summer precipitation over eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes. Chin. Sci. Bull., 58, 13391349, https://doi.org/10.1007/s11434-012-5545-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., Y. Liu, Z. Du, J. Chen, and J. Huangfu, 2017: Differences and links between the East Asian and South Asian summer monsoon systems: Characteristics and variability. Adv. Atmos. Sci., 34, 12041218, https://doi.org/10.1007/s00376-017-7008-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamae, Y., M. Watanabe, M. Kimoto, and H. Shiogama, 2014: Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate—Part I: Past changes and future projections. Climate Dyn., 43, 25532568, https://doi.org/10.1007/s00382-014-2073-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-J., S.-E. Moon, R.-Y. Lu, and R. H. Kripalani, 2002: Teleconnections: Summer monsoon over Korea and India. Adv. Atmos. Sci., 19, 665676, https://doi.org/10.1007/s00376-002-0006-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, https://doi.org/10.2151/jmsj.87.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and S. V. Singh, 1993: Large scale aspects of India-China summer monsoon rainfall. Adv. Atmos. Sci., 10, 7184, https://doi.org/10.1007/BF02656955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and A. Kulkarni, 1997: Rainfall variability over South–east Asia—Connections with Indian monsoon and ENSO extremes: New perspectives. Int. J. Climatol., 17, 11551168, https://doi.org/10.1002/(SICI)1097-0088(199709)17:11<1155::AID-JOC188>3.0.CO;2-B.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and A. Kulkarni, 2001: Monsoon rainfall variations and teleconnections over South and East Asia. Int. J. Climatol., 21, 603616, https://doi.org/10.1002/joc.625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., A. Kulkarni, and S. V. Singh, 1997: Association of the Indian summer monsoon with the Northern Hemisphere mid-latitude circulation. Int. J. Climatol., 17, 10551067, https://doi.org/10.1002/(SICI)1097-0088(199708)17:10<1055::AID-JOC180>3.0.CO;2-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., J. H. Oh, and H. S. Chaudhari, 2010: Delayed influence of the Indian Ocean Dipole mode on the East Asia–West Pacific monsoon: Possible mechanism. Int. J. Climatol., 30, 197209, https://doi.org/10.1002/joc.1890.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and H. T. Wu, 2001: Principal modes of rainfall–SST variability of the Asian summer monsoon—A reassessment of the monsoon–ENSO relationship. J. Climate, 14, 28802895, https://doi.org/10.1175/1520-0442(2001)014<2880:PMORSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., K.-M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 24612482, https://doi.org/10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and W. Zhou, 2012: Quasi-4-yr coupling between El Niño–Southern Oscillation and water vapor transport over East Asia–WNP. J. Climate, 25, 58795891, https://doi.org/10.1175/JCLI-D-11-00433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., Z. Wen, W. Zhou, and D. Wang, 2012: Atmospheric water vapor transport associated with two decadal rainfall shifts over East China. J. Meteor. Soc. Japan, 90, 587602, https://doi.org/10.2151/jmsj.2012-501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Y. Ding, 2008: Analysis and numerical simulation of the teleconnection between Indian summer monsoon and precipitation in North China. Acta Meteor. Sin., 66, 789799.

    • Search Google Scholar
    • Export Citation
  • Lu, R., J.-H. Oh, and B.-J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 4455, https://doi.org/10.3402/tellusa.v54i1.12122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metz, W., 1991: Optimal relationship of large-scale flow patterns and the barotropic feedback due to high-frequency eddies. J. Atmos. Sci., 48, 11411159, https://doi.org/10.1175/1520-0469(1991)048<1141:OROLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. Y., J. G. Jhun, S. Y. Yim, and W. M. Kim, 2010: Decadal changes in two types of the western North Pacific subtropical high in boreal summer associated with Asian summer monsoon/El Niño–Southern Oscillation connections. J. Geophys. Res., 115, D21129, https://doi.org/10.1029/2009JD013642.

    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2015: The crucial role of internal variability in modulating the decadal variation of the East Asian summer monsoon–ENSO relationship during the twentieth century. J. Climate, 28, 70937107, https://doi.org/10.1175/JCLI-D-14-00783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S.-Y., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T.N. Krishnamurti, Eds., Oxford University Pres 60–92.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Wakabayashi, S., and R. Kawamura, 2004: Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan. J. Meteor. Soc. Japan, 82, 15771588, https://doi.org/10.2151/jmsj.82.1577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R.-G. Wu, and K.-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., B. Wang, F. Huang, Q. Ding, and J.-Y. Lee, 2012: Interdecadal change of the boreal summer circumglobal teleconnection (1958–2010). Geophys. Res. Lett., 39, L12704, https://doi.org/10.1029/2012GL052371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., P. Xu, W. Chen, and Y. Liu, 2017: Interdecadal variations of the Silk Road pattern. J. Climate, 30, 99159932, https://doi.org/10.1175/JCLI-D-17-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and J. Huang, 2006: Instability of precipitation teleconnection between North China and India. Prog. Nat. Sci., 16, 980985.

    • Search Google Scholar
    • Export Citation
  • Wu, R., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. Int. J. Climatol., 22, 18791895, https://doi.org/10.1002/joc.845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., 2017: Relationship between Indian and East Asian summer rainfall variations. Adv. Atmos. Sci., 34, 415, https://doi.org/10.1007/s00376-016-6216-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2002: A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 32663279, https://doi.org/10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Du, G. Huang, X.-T. Zheng, H. Tokinaga, K. Hu, and Q. Liu, 2010: Decadal shift in El Niño influences on Indo–western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368, https://doi.org/10.1175/2010JCLI3429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, K.-S., J.-Y. Lee, and K.-J. Ha, 2014: Recent intensification of the South and East Asian monsoon contrast associated with an increase in the zonal tropical SST gradient. J. Geophys. Res., 119, 81048116, https://doi.org/10.1002/2014JD021692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2001: Relations of water vapor transport from Indian monsoon with that over East Asia and the summer rainfall in China. Adv. Atmos. Sci., 18, 10051017, https://doi.org/10.1007/BF03403519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., Q. Min, and J. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 11241132, https://doi.org/10.1007/s11430-016-9026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., J. Li, Y. Li, S. Zhao, and D. Deng, 2016: Influence of the summer NAO on the spring-NAO-based predictability of the East Asian summer monsoon. J. Climate, 55, 14591476, https://doi.org/10.1175/JAMC-D-15-0199.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and R. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, https://doi.org/10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 720 271 28
PDF Downloads 676 159 7