• Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño–like response to volcanic forcing. Nature, 426, 274278, https://doi.org/10.1038/nature02101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anchukaitis, K. J., and Coauthors, 2017: Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quat. Sci. Rev., 163, 122, https://doi.org/10.1016/j.quascirev.2017.02.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braganza, K., J. L. Gergis, S. B. Power, J. S. Risbey, and A. M. Fowler, 2009: A multiproxy index of the El Niño–Southern Oscillation, A.D. 1525–1982. J. Geophys. Res., 114, D05106, https://doi.org/10.1029/2008JD010896.

    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, https://doi.org/10.1029/2005jd006548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bürger, G., 2007: On the verification of climate reconstructions. Climate Past, 3, 397409, https://doi.org/10.5194/cp-3-397-2007.

  • Bürger, G., and U. Cubasch, 2005: Are multiproxy climate reconstructions robust? Geophys. Res. Lett., 32, L23711, https://doi.org/10.1029/2005gl024155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2011: Reconstructing the NH mean temperature: Can underestimation of trends and variability be avoided? J. Climate, 24, 674692, https://doi.org/10.1175/2010JCLI3646.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., and F. C. Ljungqvist, 2017: Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Rev. Geophys., 55, 4096, https://doi.org/10.1002/2016RG000521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., T. Schmith, and P. Thejll, 2009: A surrogate ensemble study of climate reconstruction methods: Stochasticity and robustness. J. Climate, 22, 951976, https://doi.org/10.1175/2008JCLI2301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coats, S., J. E. Smerdon, B. I. Cook, and R. Seager, 2013: Stationarity of the tropical Pacific teleconnection to North America in CMIP5/PMIP3 model simulations. Geophys. Res. Lett., 40, 49274932, https://doi.org/10.1002/grl.50938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coats, S., J. E. Smerdon, B. Cook, R. Seager, E. R. Cook, and K. Anchukaitis, 2016: Internal ocean–atmosphere variability drives megadroughts in Western North America. Geophys. Res. Lett., 43, 98869894, https://doi.org/10.1002/2016GL070105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., E. R. Cook, J. E. Smerdon, R. Seager, A. P. Williams, S. Coats, D. W. Stahle, and J. Villanueva Díaz, 2016: North American megadroughts in the Common Era: Reconstructions and simulations. Wiley Interdiscip. Rev.: Climate Change, 7, 411432, https://doi.org/10.1002/wcc.394.

    • Search Google Scholar
    • Export Citation
  • D’Arrigo, R., E. R. Cook, R. J. Wilson, R. Allan, and M. E. Mann, 2005: On the variability of ENSO over the past six centuries. Geophys. Res. Lett., 32, L03711, https://doi.org/10.1029/2004gl022055.

    • Search Google Scholar
    • Export Citation
  • d’Orgeville, M., and W. R. Peltier, 2007: On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: Might they be related? Geophys. Res. Lett., 34, L23705, https://doi.org/10.1029/2007gl031584.

    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., K. M. Cobb, M. E. Mann, and A. T. Wittenberg, 2013a: Estimating central equatorial Pacific SST variability over the past millennium. Part I: Methodology and validation. J. Climate, 26, 23022328, https://doi.org/10.1175/jcli-d-11-00510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., K. M. Cobb, M. E. Mann, and A. T. Wittenberg, 2013b: Estimating central equatorial Pacific SST variability over the past millennium. Part II: Reconstructions and implications. J. Climate, 26, 23292352, https://doi.org/10.1175/JCLI-D-11-00511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esper, J., D. C. Frank, R. J. Wilson, and K. R. Briffa, 2005: Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys. Res. Lett., 32, L07711, https://doi.org/10.1029/2004gl021236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, M. N., A. Kaplan, and M. A. Cane, 2002: Pacific sea surface temperature field reconstruction from coral δ18O data using reduced space objective analysis. Paleoceanography, 17, 1007, https://doi.org/10.1029/2000pa000590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, M. N., J. E. Smerdon, A. Kaplan, S. Tolwinski-Ward, and J. González-Rouco, 2014: Climate field reconstruction uncertainty arising from multivariate and nonlinear properties of predictors. Geophys. Res. Lett., 41, 91279134, https://doi.org/10.1002/2014GL062063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández-Donado, L., and Coauthors, 2013: Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium. Climate Past, 9, 393421, https://doi.org/10.5194/cp-9-393-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, D. C., J. Esper, C. C. Raible, U. Büntgen, V. Trouet, B. Stocker, and F. Joos, 2010: Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature, 463, 527530, https://doi.org/10.1038/nature08769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C., A. Robock, and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008jd010239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., E. Crespin, A. de Montety, M. Mann, H. Renssen, and A. Timmermann, 2010: Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J. Geophys. Res., 115, D09108, https://doi.org/10.1029/2009jd012737.

    • Search Google Scholar
    • Export Citation
  • Guillot, D., B. Rajaratnam, and J. Emile-Geay, 2015: Statistical paleoclimate reconstructions via Markov random fields. Ann. Appl. Stat., 9, 324352, https://doi.org/10.1214/14-AOAS794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., J. Emile-Geay, E. J. Steig, D. Noone, D. M. Anderson, R. Tardif, N. Steiger, and W. A. Perkins, 2016: The last millennium climate reanalysis project: Framework and first results. J. Geophys. Res. Atmos., 121, 67456764, https://doi.org/10.1002/2016jd024751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henke, L. M., F. H. Lambert, and D. J. Charman, 2017: Was the Little Ice Age more or less El Niño–like than the Medieval Climate Anomaly? Evidence from hydrological and temperature proxy data. Climate Past, 13, 267301, https://doi.org/10.5194/cp-13-267-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hope, P., B. J. Henley, J. Gergis, J. Brown, and H. Ye, 2017: Time-varying spectral characteristics of ENSO over the Last Millennium. Climate Dyn., 49, 17051727, https://doi.org/10.1007/s00382-016-3393-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, S., and A. LeGrande, 2015: Stability of ENSO and its tropical Pacific teleconnections over the Last Millennium. Climate Past, 11, 13471360, https://doi.org/10.5194/cp-11-1347-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and Coauthors, 2013: El Niño modulations over the past seven centuries. Nat. Climate Change, 3, 822, https://doi.org/10.1038/nclimate1936.

  • Mann, M. E., R. S. Bradley, and M. K. Hughes, 1998: Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779787, https://doi.org/10.1038/33859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., S. Rutherford, E. Wahl, and C. Ammann, 2005a: Testing the fidelity of methods used in proxy-based reconstructions of past climate. J. Climate, 18, 40974107, https://doi.org/10.1175/JCLI3564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., M. A. Cane, S. E. Zebiak, and A. Clement, 2005b: Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J. Climate, 18, 447456, https://doi.org/10.1175/JCLI-3276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., S. Rutherford, E. Wahl, and C. Ammann, 2007: Robustness of proxy-based climate field reconstruction methods. J. Geophys. Res., 112, D12109, https://doi.org/10.1029/2006jd008272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., Z. Zhang, M. K. Hughes, R. S. Bradley, S. K. Miller, S. Rutherford, and F. Ni, 2008: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad. Sci. USA, 105, 13 25213 257, https://doi.org/10.1073/pnas.0805721105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and Coauthors, 2009: Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326, 12561260, https://doi.org/10.1126/science.1177303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, H. V., and Coauthors, 2015: Robust global ocean cooling trend for the pre-industrial Common Era. Nat. Geosci., 8, 671, https://doi.org/10.1038/ngeo2510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., and A. Timmermann, 2011: The effect of explosive tropical volcanism on ENSO. J. Climate, 24, 21782191, https://doi.org/10.1175/2010JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, and O. Timm, 2010: A unified proxy for ENSO and PDO variability since 1650. Climate Past, 6, 117, https://doi.org/10.5194/cp-6-1-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, S., and R. McKitrick, 2005: Hockey sticks, principal components, and spurious significance. Geophys. Res. Lett., 32, L03710, https://doi.org/10.1029/2004gl021750.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and Coauthors, 2016: Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bull. Amer. Meteor. Soc., 97, 735754, https://doi.org/10.1175/BAMS-D-14-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PAGES Hydro2K Consortium, 2017: Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Climate Past, 13, 18511900, https://doi.org/10.5194/cp-13-1851-2017.

    • Search Google Scholar
    • Export Citation
  • Pyrina, M., S. Wagner, and E. Zorita, 2017: Pseudo-proxy evaluation of Climate Field Reconstruction methods of North Atlantic climate based on an annually resolved marine proxy network. Climate Past, 13, 13391354, https://doi.org/10.5194/cp-13-1339-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutherford, S. D., M. E. Mann, T. Delworth, and R. Stouffer, 2003: Climate field reconstruction under stationary and nonstationary forcing. J. Climate, 16, 462479, https://doi.org/10.1175/1520-0442(2003)016<0462:CFRUSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutherford, S. D., M. E. Mann, T. Osborn, K. Briffa, P. D. Jones, R. Bradley, and M. Hughes, 2005: Proxy-based Northern Hemisphere surface temperature reconstructions: Sensitivity to method, predictor network, target season, and target domain. J. Climate, 18, 23082329, https://doi.org/10.1175/JCLI3351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutherford, S. D., M. E. Mann, C. M. Ammann, and E. R. Wahl, 2010: Comments on “A surrogate ensemble study of climate reconstruction methods: Stochasticity and robustness.” J. Climate, 23, 28322838, https://doi.org/10.1175/2009JCLI3146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2001: Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. J. Climate, 14, 853871, https://doi.org/10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., 2012: Climate models as a test bed for climate reconstruction methods: Pseudoproxy experiments. Wiley Interdiscip. Rev.: Climate Change, 3, 6377, https://doi.org/10.1002/wcc.149.

    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., and A. Kaplan, 2007: Comments on “Testing the fidelity of methods used in proxy-based reconstructions of past climate”: The role of the standardization interval. J. Climate, 20, 56665670, https://doi.org/10.1175/2007JCLI1794.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., and H. N. Pollack, 2016: Reconstructing Earth’s surface temperature over the past 2000 years: The science behind the headlines. Wiley Interdiscip. Rev.: Climate Change, 7, 746771, https://doi.org/10.1002/wcc.418.

    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., A. Kaplan, and D. E. Amrhein, 2010a: Erroneous model field representations in multiple pseudoproxy studies: Corrections and implications. J. Climate, 23, 55485554, https://doi.org/10.1175/2010JCLI3742.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., A. Kaplan, D. Chang, and M. N. Evans, 2010b: A pseudoproxy evaluation of the CCA and RegEM methods for reconstructing climate fields of the last millennium. J. Climate, 23, 48564880, https://doi.org/10.1175/2010JCLI3328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., A. Kaplan, E. Zorita, J. F. González-Rouco, and M. Evans, 2011: Spatial performance of four climate field reconstruction methods targeting the Common Era. Geophys. Res. Lett., 38, L11705, https://doi.org/10.1029/2011gl047372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., S. Coats, and T. R. Ault, 2016: Model-dependent spatial skill in pseudoproxy experiments testing climate field reconstruction methods for the Common Era. Climate Dyn., 46, 19211942, https://doi.org/10.1007/s00382-015-2684-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., L. Terray, C. Cassou, A. Voldoire, D. Salas-Mélia, and J. Servonnat, 2011: Natural forcing of climate during the last millennium: Fingerprint of solar variability. Climate Dyn., 36, 13491364, https://doi.org/10.1007/s00382-010-0803-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tierney, J. E., and Coauthors, 2015: Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography, 30, 226252, https://doi.org/10.1002/2014PA002717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535, https://doi.org/10.1038/s41586-018-0252-6.

  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., P. F. Craigmile, M. Haran, B. Li, E. Mannshardt, and B. Rajaratnam, 2012: Piecing together the past: Statistical insights into paleoclimatic reconstructions. Quat. Sci. Rev., 35, 122, https://doi.org/10.1016/j.quascirev.2012.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006gl026894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and A. T. Wittenberg, 2010: El Niño and our future climate: Where do we stand? Wiley Interdiscip. Rev.: Climate Change, 1, 260270, https://doi.org/10.1002/wcc.33.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., E. Zorita, J. M. Jones, Y. Dimitriev, F. González-Rouco, and S. F. Tett, 2004: Reconstructing past climate from noisy data. Science, 306, 679682, https://doi.org/10.1126/science.1096109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahl, E. R., D. M. Ritson, and C. M. Ammann, 2006: Comment on “Reconstructing past climate from noisy data.” Science, 312, 529, https://doi.org/10.1126/science.1120866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Emile-Geay, D. Guillot, J. Smerdon, and B. Rajaratnam, 2014: Evaluating climate field reconstruction techniques using improved emulations of real-world conditions. Climate Past, 10, 119, https://doi.org/10.5194/cp-10-1-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Emile-Geay, D. Guillot, N. P. McKay, and B. Rajaratnam, 2015: Fragility of reconstructed temperature patterns over the Common Era: Implications for model evaluation. Geophys. Res. Lett., 42, 71627170, https://doi.org/10.1002/2015GL065265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R., A. Tudhope, P. Brohan, K. Briffa, T. Osborn, and S. Tett, 2006: Two-hundred-fifty years of reconstructed and modeled tropical temperatures. J. Geophys. Res. Oceans, 111, C10007, https://doi.org/10.1029/2005jc003188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R., E. Cook, R. D’Arrigo, N. Riedwyl, M. N. Evans, A. Tudhope, and R. Allan, 2010: Reconstructing ENSO: The influence of method, proxy data, climate forcing and teleconnections. J. Quaternary Sci., 25, 6278, https://doi.org/10.1002/jqs.1297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., and Coauthors, 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206, https://doi.org/10.1002/2017RG000568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, K. S., and A. Timmermann, 2018: Decadal monsoon–ENSO relationships reexamined. Geophys. Res. Lett., 45, 20142021, https://doi.org/10.1002/2017GL076912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zorita, E., F. Gonzalez-Rouco, and H. Von Storch, 2007: Comments on “testing the fidelity of methods used in proxy-based reconstructions of past climate.” J. Climate, 20, 36933698, https://doi.org/10.1175/JCLI4171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 10
PDF Downloads 12 12 4

Calibration Uncertainties of Tropical Pacific Climate Reconstructions over the Last Millennium

View More View Less
  • 1 Center for Climate Physics, Institute for Basic Science, and Pusan National University, Busan, South Korea
© Get Permissions
Restricted access

Abstract

Several climate field reconstruction methods assume stationarity between the leading patterns of variability identified during the instrumental calibration period and the reconstruction period. We examine how and to what extent this restrictive assumption may generate uncertainties in reconstructing past tropical Pacific climate variability. Based on the Last Millennium (850–2005 CE) ensemble simulations conducted with the Community Earth System Model and by developing a series of pseudoproxy reconstructions for different calibration periods, we find that the overall reconstruction skill for global and more regional-scale climate indices depends significantly on the magnitude of externally forced global mean temperature variability during the chosen calibration period. This effect strongly reduces the fidelity of reconstructions of decadal to centennial-scale tropical climate variability, associated with the interdecadal Pacific oscillation (IPO) and centennial-scale temperature shifts between the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). In contrast, our pseudoproxy-based analysis demonstrates that reconstructions of interannual El Niño–Southern Oscillation (ENSO) variability are more robust and less affected by changes in calibration period.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Axel Timmermann, timmermann@pusan.ac.kr

Abstract

Several climate field reconstruction methods assume stationarity between the leading patterns of variability identified during the instrumental calibration period and the reconstruction period. We examine how and to what extent this restrictive assumption may generate uncertainties in reconstructing past tropical Pacific climate variability. Based on the Last Millennium (850–2005 CE) ensemble simulations conducted with the Community Earth System Model and by developing a series of pseudoproxy reconstructions for different calibration periods, we find that the overall reconstruction skill for global and more regional-scale climate indices depends significantly on the magnitude of externally forced global mean temperature variability during the chosen calibration period. This effect strongly reduces the fidelity of reconstructions of decadal to centennial-scale tropical climate variability, associated with the interdecadal Pacific oscillation (IPO) and centennial-scale temperature shifts between the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). In contrast, our pseudoproxy-based analysis demonstrates that reconstructions of interannual El Niño–Southern Oscillation (ENSO) variability are more robust and less affected by changes in calibration period.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Axel Timmermann, timmermann@pusan.ac.kr
Save