• Befort, D. J., S. Wild, T. Kruschke, U. Ulbrich, and G. C. Leckebusch, 2016: Different long-term trends of extra-tropical cyclones and windstorms in ERA-20C and NOAA-20CR reanalyses. Atmos. Sci. Lett., 17, 586595, https://doi.org/10.1002/asl.694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623, https://doi.org/10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., and K.-Y. Kim, 1993: Towards development of a strategy for determining the origin of decadal-centennial scale climate variability. Quat. Sci. Rev., 12, 375385, https://doi.org/10.1016/S0277-3791(05)80003-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere 2000. Climate Dyn., 16, 661676, https://doi.org/10.1007/s003820000075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichler, T. P., and J. Gottschalck, 2013: A comparison of Southern Hemisphere cyclone track climatology and interannual variability in coarse-gridded reanalysis datasets. Adv. Meteor., 2013, 891260, https://doi.org/10.1155/2013/891260.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and A. Mestas-Nuñez, 1999: Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Climate, 12, 27192733, https://doi.org/10.1175/1520-0442(1999)012<2719:MVIGSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. Mestas-Nuñez, and P. J. Trimple, 2001: The Atlantic multidecadal oscillations and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, A. W. Colman, and R. Washington, 1999: Large-scale modes of ocean surface temperature since the late nineteenth century. Beyond El Niño: Decadal and Interdecadal Climate Variability, 1st ed., A. Navarra, Ed., Springer-Verlag, 73–102.

    • Crossref
    • Export Citation
  • Frankcombe, L. M., M. H. England, M. E. Mann, and B. A. Steinman, 2015: Separating internal variability from the externally forced climate response. J. Climate, 28, 81848202, https://doi.org/10.1175/JCLI-D-15-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., G. Gastineau, and Y. O. Kwon, 2017: Estimation of the SST response to anthropogenic and external forcing and its impact on the Atlantic multidecadal oscillation and the Pacific decadal oscillation. J. Climate, 30, 98719895, https://doi.org/10.1175/JCLI-D-17-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, M. A., and V. B. Rao, 1999: Energetics of the high frequency disturbances over South America. Rev. Bras. Geofís., 17, 2128, https://doi.org/10.1590/s0102-261x1999000100003.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, https://doi.org/10.1126/science.1060040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gómara, I., B. Rodríguez-Fonseca, P. Zurita-Gotor, S. Ulbrich, and J. G. Pinto, 2016: Abrupt transitions in the NAO control of explosive North Atlantic cyclone development. Climate Dyn., 47, 30913111, https://doi.org/10.1007/s00382-016-3015-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grieger, J., G. C. Leckebusch, C. C. Raible, I. Rudeva, and I. Simmonds, 2018: Subantarctic cyclones identified by 14 tracking methods, and their role for moisture transports into the continent. Tellus, 70A, 118, https://doi.org/10.1080/16000870.2018.1454808.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general-method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586, https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. A., and I. Simmonds, 1993: Climatology of Southern Hemisphere extratropical cyclones. Climate Dyn., 9, 131145, https://doi.org/10.1007/BF00209750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841986, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendes, D., E. P. Souza, J. A. Marengo, and M. C. D. Mendes, 2010: Climatology of extratropical cyclones over the South American–southern oceans sector. Theor. Appl. Climatol., 100, 239250, https://doi.org/10.1007/s00704-009-0161-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mestas-Nuñez, A. M., and D. B. Enfield, 2001: Eastern equatorial Pacific SST variability: ENSO and non-ENSO components and their climate associations. J. Climate, 14, 391402, https://doi.org/10.1175/1520-0442(2001)014<0391:EEPSVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, https://doi.org/10.1175/BAMS-D-11-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530, https://doi.org/10.1175/1520-0477-56.5.527.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 19721998, https://doi.org/10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. E., P. D. Jones, C. K. Folland, and A. Bevan, 1994: Interdecadal changes of surface temperature since the late nineteenth century. J. Geophys. Res., 99, 14 37314 399, https://doi.org/10.1029/94JD00548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. MIT Press, 520 pp.

  • Pinto, J. R. D., and R. P. Rocha, 2011: The energy cycle and structural evolution of cyclones over southeastern South America in three case studies. J. Geophys. Res., 116, D14112, https://doi.org/10.1029/2011JD016217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., 2000: Multidecadal climate variability in the subtropics/mid-latitudes of the Southern Hemisphere oceans. Tellus, 52A, 203223, https://doi.org/10.1034/j.1600-0870.2000.00978.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., and R. J. Murray, 2001: Modelling low frequency variability in Southern Hemisphere extra-tropical cyclone characteristics and its sensitivity to sea-surface temperature. Int. J. Climatol., 21, 249267, https://doi.org/10.1002/joc.608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reboita, M. S., R. P. da Rocha, T. Ambrizzi, and C. D. Gouveia, 2015: Trend and teleconnection patterns in the climatology of extratropical cyclones over the Southern Hemisphere. Climate Dyn., 45, 19291944, https://doi.org/10.1007/s00382-014-2447-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosa, M. B., N. J. Ferreira, M. A. Gan, and L. H. R. Machado, 2013: Energetics of cyclogenesis events over the southern coast of Brazil. Rev. Bras. Meteor., 28, 231245, https://doi.org/10.1590/S0102-77862013000300001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, https://doi.org/10.1038/367723a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., and R. L. Fogt, 2018: Artifacts in century-length atmospheric and coupled reanalyses over Antarctica due to historical data availability. Geophys. Res. Lett., 45, 964973, https://doi.org/10.1002/2017GL076226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2000a: Variability of Southern Hemisphere extratropical cyclone behavior, 1958–97. J. Climate, 13, 550561, https://doi.org/10.1175/1520-0442(2000)013<0550:VOSHEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2000b: Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis. J. Climate, 13, 873885, https://doi.org/10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1994: An objective cyclone climatology for the Southern Hemisphere. Mon. Wea. Rev., 122, 22392256, https://doi.org/10.1175/1520-0493(1994)122<2239:AOCCFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1995: A climatology of cyclogenesis for the Southern Hemisphere. Mon. Wea. Rev., 123, 16011619, https://doi.org/10.1175/1520-0493(1995)123<1601:ACOCFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1997: Objective identification of cyclones and their circulation intensity, and climatology. Wea. Forecasting, 12, 595612, https://doi.org/10.1175/1520-0434(1997)012<0595:OIOCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 48994919, https://doi.org/10.1175/JCLI4283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varino, F., P. Arbogast, B. Joly, G. Riviere, M.-L. Fandeur, H. Bovy, and J.-B. Granier, 2018: Northern Hemisphere extratropical winter cyclones variability over the 20th century derived from ERA-20C reanalysis. Climate Dyn., 52, 10271048, https://doi.org/10.1007/s00382-018-4176-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venegas, S. A., L. A. Mysak, and D. N. Straub, 1996: Evidence for interannual and interdecadal climate variability in the South Atlantic. Geophys. Res. Lett., 23, 26732676, https://doi.org/10.1029/96GL02373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venegas, S. A., L. A. Mysak, and D. N. Straub, 1998: An interdecadal climate cycle in the South Atlantic and its links to other ocean basins. J. Geophys. Res., 103, 24 72324 736, https://doi.org/10.1029/98JC02443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Y. Feng, G. P. Compo, V. R. Swail, F. W. Zwiers, R. J. Allan, and P. D. Sardeshmukh, 2013: Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis. Climate Dyn., 40, 27752800, https://doi.org/10.1007/s00382-012-1450-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 41 7
PDF Downloads 28 28 4

Relations of the Low-Level Extratropical Cyclones in the Southeast Pacific and South Atlantic to the Atlantic Multidecadal Oscillation

View More View Less
  • 1 Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, São Paulo, Brazil
  • 2 Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, São Paulo, Brazil, and Department of Meteorology and Oceanography, Andhra University, Visakhapatnam, India
  • 3 Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
© Get Permissions
Restricted access

Abstract

The relations of the low-level extratropical cyclones in the southeastern Pacific and South Atlantic with the sea surface temperature (SST) anomalies associated with the Atlantic multidecadal oscillation (AMO) during the summer and winter of the 1979–93 cold AMO (CAMO) and 2003–17 warm AMO (WAMO) are analyzed. During both seasons and in both AMO phases, the cyclone trajectories defined by cyclone local counts exceeding 10 events per grid box occur approximately in the areas with the AMO-related positive SST anomalies. The cyclone densities in most latitudes during both seasons are higher in the CAMO than in the WAMO. Thus, the cyclone density in the study domain presents a reduction trend during the 1979–2017 period. The large-scale northward SST anomalous gradients between the bands north and south of 40°S increase the long-wave baroclinicity in the midlatitudes in the WAMO, and the southward SST anomalous gradients decrease it in the CAMO. Consequently, the short-wave baroclinicity is higher in the WAMO than in the CAMO in the southeastern Pacific midlatitudes. Thus, the cyclones are more energetic in the WAMO than in the CAMO. In the South Atlantic region off the Argentinean coast, both the barotropic and baroclinic conversion terms are positive, indicating an increase of the kinetic energy of the short waves. The low-level cyclones in the southeastern Pacific and South Atlantic are modulated by the AMO. As far as we know, the relation of the SH low-level extratropical cyclones to the AMO documented here was not studied before.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mary Toshie Kayano, mary.kayano@inpe.br

Abstract

The relations of the low-level extratropical cyclones in the southeastern Pacific and South Atlantic with the sea surface temperature (SST) anomalies associated with the Atlantic multidecadal oscillation (AMO) during the summer and winter of the 1979–93 cold AMO (CAMO) and 2003–17 warm AMO (WAMO) are analyzed. During both seasons and in both AMO phases, the cyclone trajectories defined by cyclone local counts exceeding 10 events per grid box occur approximately in the areas with the AMO-related positive SST anomalies. The cyclone densities in most latitudes during both seasons are higher in the CAMO than in the WAMO. Thus, the cyclone density in the study domain presents a reduction trend during the 1979–2017 period. The large-scale northward SST anomalous gradients between the bands north and south of 40°S increase the long-wave baroclinicity in the midlatitudes in the WAMO, and the southward SST anomalous gradients decrease it in the CAMO. Consequently, the short-wave baroclinicity is higher in the WAMO than in the CAMO in the southeastern Pacific midlatitudes. Thus, the cyclones are more energetic in the WAMO than in the CAMO. In the South Atlantic region off the Argentinean coast, both the barotropic and baroclinic conversion terms are positive, indicating an increase of the kinetic energy of the short waves. The low-level cyclones in the southeastern Pacific and South Atlantic are modulated by the AMO. As far as we know, the relation of the SH low-level extratropical cyclones to the AMO documented here was not studied before.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mary Toshie Kayano, mary.kayano@inpe.br
Save