• Alexander, M., and J. Scott, 2002: The influence of ENSO on air–sea interaction in the Atlantic. Geophys. Res. Lett., 29, 1701, https://doi.org/10.1029/2001GL014347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfaro, E. J., 2007: Uso del análisis de correlación canónica para la predicción de la precipitación pluvial en Centroamérica. Ing. Compet., 9, 3348.

    • Search Google Scholar
    • Export Citation
  • Amador, J. A., 1998: A climatic feature of the tropical Americas: The trade wind easterly jet. Top. Meteor. Oceanogr., 5, 113.

  • Amador, J. A., 2008: The Intra-Americas seas low-level jet. Ann. N. Y. Acad. Sci., 1146, 153188, https://doi.org/10.1196/annals.1446.012.

  • Amador, J. A., and V. Magaña, 1999: Dynamics of the low level jet over the Caribbean Sea. Third Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 401402.

  • Amador, J. A., E. J. Alfaro, O. G. Lizano, and V. O. Magaña, 2006: Atmospheric forcing of the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 101142, https://doi.org/10.1016/j.pocean.2006.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amador, J. A., E. J. Alfaro, E. R. Rivera and B. Calderón, 2010: Climatic features and their relationship with tropical cyclones over the Intra-Americas seas. Hurricanes and Climate Change, Vol. 2, J. B. Elsner et al., Eds., Springer, 149–173, https://doi.org/10.1007/978-90-481-9510-7_9.

    • Crossref
    • Export Citation
  • Amador, J. A., A. M. Durán-Quesada, E. R. Rivera, G. Mora, F. Sáenz, B. Calderón, and N. Mora, 2016: The easternmost tropical Pacific. Part II: Seasonal and intraseasonal modes of atmospheric variability. Rev. Biol. Trop., 64, S23S57, https://doi.org/10.15517/rbt.v64i1.23409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and R. Preisendorfer, 1987: Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon. Wea. Rev., 115, 18251850, https://doi.org/10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, E. D., and Coauthors, 1993: Supersquirt: Dynamics of the Gulf of Tehuantepec, Mexico. Oceanography, 6, 2330, https://doi.org/10.5670/oceanog.1993.19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y. L., and L. Y. Oey, 2013: Coupled response of the trade wind, SST gradient, and SST in the Caribbean Sea, and the potential impact on Loop Current’s interannual variability. J. Phys. Oceanogr., 43, 13251344, https://doi.org/10.1175/JPO-D-12-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2010: Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. J. Climate, 23, 14771494, https://doi.org/10.1175/2009JCLI3210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curtis, S., and D. W. Gamble, 2008: Regional variations of the Caribbean mid-summer drought. Theor. Appl. Climatol., 94, 2534, https://doi.org/10.1007/s00704-007-0342-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curtis, S., and S. Hastenrath, 1995: Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events. J. Geophys. Res., 100, 15 83515 847, https://doi.org/10.1029/95JC01502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., P. Van der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15, 32803290, https://doi.org/10.1175/1520-0442(2002)015<3280:ADSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S. P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durán-Quesada, A. M., L. Gimeno, J. A. Amador, and R. Nieto, 2010: Moisture sources for Central America: Identification of moisture sources using a Lagrangian analysis technique. J. Geophys. Res., 115, D05103, https://doi.org/10.1029/2009JD012455.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102, 929945, https://doi.org/10.1029/96JC03296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and E. J. Alfaro, 1999: The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans. J. Climate, 12, 20932103, https://doi.org/10.1175/1520-0442(1999)012<2093:TDOCRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., S. K. Lee, and C. Wang, 2006: How are large western hemisphere warm pools formed? Prog. Oceanogr., 70, 346365, https://doi.org/10.1016/j.pocean.2005.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fallas López, B., and E. J. Alfaro, 2012: Uso de herramientas estadísticas para la predicción estacional del campo de precipitación en América Central como apoyo a los Foros Climáticos Regionales. 2: Análisis de Correlación Canónica. Rev. Climatol., 12, 93105.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and E. Kestenare, 2005: Air–sea interactions in the tropical Atlantic: A view based on lagged rotated maximum covariance analysis. J. Climate, 18, 38743890, https://doi.org/10.1175/JCLI3498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2015: The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamble, D. W., D. B. Parnell, and S. Curtis, 2008: Spatial variability of the Caribbean mid-summer drought and relation to north Atlantic high circulation. Int. J. Climatol., 28, 343350, https://doi.org/10.1002/joc.1600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, S. E., and M. A. Saunders, 2001: North Atlantic Oscillation impact on tropical north Atlantic winter atmospheric variability. Geophys. Res. Lett., 28, 10151018, https://doi.org/10.1029/2000GL012449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., Y. Kushnir, and M. A. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297311, https://doi.org/10.1175/1520-0442(2000)013<0297:IVOCRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., M. A. Cane, and Y. Kushnir, 2001: Interdecadal changes in the ENSO teleconnection to the Caribbean region and the North Atlantic Oscillation. J. Climate, 14, 28672879, https://doi.org/10.1175/1520-0442(2001)014<2867:ICITET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handoh, I. C., A. J. Matthews, G. R. Bigg, and D. P. Stevens, 2006: Interannual variability of the tropical Atlantic independent of and associated with ENSO: Part I. The north tropical Atlantic. Int. J. Climatol., 26, 19371956, https://doi.org/10.1002/joc.1343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herrera, E., V. Magaña, and E. Caetano, 2015: Air–sea interactions and dynamical processes associated with the midsummer drought. Int. J. Climatol., 35, 15691578, https://doi.org/10.1002/joc.4077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., A. M. Durán-Quesada, J. A. Amador, and E. J. Alfaro, 2015: The Caribbean low-level jet, the inter-tropical convergence zone and precipitation patterns in the Intra-Americas Sea: A proposed dynamical mechanism. Geogr. Ann., 97A, 4159, https://doi.org/10.1111/geoa.12085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., P. S. Schopf, and Z. Pan, 2002: The ENSO effect on the tropical Atlantic variability: A regionally coupled model study. Geophys. Res. Lett., 29, 2039, https://doi.org/10.1029/2002GL014872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35, https://doi.org/10.1029/134GM01.

    • Crossref
    • Export Citation
  • Kim, W., S. W. Yeh, J. H. Kim, J. S. Kug, and M. Kwon, 2011: The unique 2009–2010 El Niño event: A fast phase transition of warm pool El Niño to La Niña. Geophys. Res. Lett., 38, L15809, https://doi.org/10.1029/2011GL048521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. K., D. B. Enfield, and C. Wang, 2008: Why do some El Niños have no impact on tropical North Atlantic SST? Geophys. Res. Lett., 35, L16705, https://doi.org/10.1029/2008GL034734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legeckis, R., 1988: Upwelling off the Gulfs of Panama and Papagayo in the tropical Pacific during March 1985. J. Geophys. Res., 93, 15 48515 489, https://doi.org/10.1029/JC093iC12p15485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J.-H., J. C. McWilliams, and N. Gruber, 2009: High-frequency response of the ocean to mountain gap winds in the northeastern tropical Pacific. J. Geophys. Res., 114, C12005, https://doi.org/10.1029/2009JC005370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., S. K. Lee, D. B. Enfield, B. A. Muhling, J. T. Lamkin, F. E. Muller-Karger, and M. A. Roffer, 2015: Potential impact of climate change on the Intra-Americas Sea: Part-1. A dynamic downscaling of the CMIP5 model projections. J. Mar. Syst., 148, 5669, https://doi.org/10.1016/j.jmarsys.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaña, V., and E. Caetano, 2005: Temporal evolution of summer convective activity over the Americas warm pools. Geophys. Res. Lett., 32, L02803, https://doi.org/10.1029/2004GL021033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaña, V., J. A. Amador, and S. Medina, 1999: The midsummer drought over Mexico and Central America. J. Climate, 12, 15771588, https://doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaña, V., J. L. Vázquez, J. L. Pérez, and J. B. Pérez, 2003: Impact of El Niño on precipitation in Mexico. Geofis. Int., 42, 313330.

    • Search Google Scholar
    • Export Citation
  • Maldonado, T., 2015: Aspects of climate variability during winter and summer in Central America. Ph.D. dissertation, Uppsala University, 60 pp.

  • Maldonado, T., and E. Alfaro, 2010: Propuesta metodológica para la predicción climática estacional de eventos extremos y días con precipitación. Estudio de caso: Sur de América Central. Rev. InterSedes, 11, 182214.

    • Search Google Scholar
    • Export Citation
  • Maldonado, T., and E. Alfaro, 2011: Predicción estacional para ASO de eventos extremos y días con precipitación sobre las vertientes Pacífico y Caribe de América Central, utilizando análisis de correlación canónica. Rev. InterSedes, 12, 78108.

    • Search Google Scholar
    • Export Citation
  • Maldonado, T., E. Alfaro, B. Fallas-López, and L. Alvarado, 2013: Seasonal prediction of extreme precipitation events and frequency of rainy days over Costa Rica, Central America, using canonical correlation analysis. Adv. Geosci., 33, 4152, https://doi.org/10.5194/adgeo-33-41-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maldonado, T., A. Rutgersson, J. Amador, E. Alfaro, and B. Claremar, 2016a: Variability of the Caribbean low-level jet during boreal winter: Large-scale forcings. Int. J. Climatol., 36, 19541969, https://doi.org/10.1002/joc.4472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maldonado, T., A. Rutgersson, E. Alfaro, J. Amador, and B. Claremar, 2016b: Interannual variability of the midsummer drought in Central America and the connection with sea surface temperatures. Adv. Geosci., 42, 3550, https://doi.org/10.5194/adgeo-42-35-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maldonado, T., E. Alfaro, A. Rutgersson, and J. Amador, 2017: The early rainy season in Central America: The role of the tropical North Atlantic SSTs. Int. J. Climatol., 37, 37313742, https://doi.org/10.1002/joc.4958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and C. Schumacher, 2011: The Caribbean low-level jet and its relationship with precipitation in IPCC AR4 models. J. Climate, 24, 59355950, https://doi.org/10.1175/JCLI-D-11-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, N. Schneider, M. F. Stuecker, and M. H. England, 2012: The effect of the South Pacific convergence zone on the termination of El Niño events and the meridional asymmetry of ENSO. J. Climate, 25, 55665586, https://doi.org/10.1175/JCLI-D-11-00332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melice, J. L., and J. Servain, 2003: The tropical Atlantic meridional SST gradient index and its relationships with the SOI, NAO and Southern Ocean. Climate Dyn., 20, 447464, https://doi.org/10.1007/s00382-002-0289-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mestas-Nuñez, A. M., D. B. Enfield, and C. Zhang, 2007: Water vapor fluxes over the Intra-Americas Sea: Seasonal and interannual variability and associations with rainfall. J. Climate, 20, 19101922, https://doi.org/10.1175/JCLI4096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller-Karger, F. E., and Coauthors, 2015: Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico. Prog. Oceanogr., 134, 5476, https://doi.org/10.1016/j.pocean.2014.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, E., and D. Enfield, 2011: The boreal spring variability of the Intra-Americas low-level jet and its relation with precipitation and tornadoes in the eastern United States. Climate Dyn., 36, 247259, https://doi.org/10.1007/s00382-009-0688-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, E., C. Wang, and D. Enfield, 2010: The Intra-Americas springtime sea surface temperature anomaly dipole as fingerprint of remote influences. J. Climate, 23, 4356, https://doi.org/10.1175/2009JCLI3006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Navarra, A., and V. Simoncini, 2010: A Guide to Empirical Orthogonal Functions for Climate Data Analysis. Springer Science and Business Media, 151 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paredes-Trejo, F. J., H. A. Barbosa, M. A. Peñaloza-Murillo, M. A. Moreno, and A. Farías, 2016: Intercomparison of improved satellite rainfall estimation with CHIRPS gridded product and rain gauge data over Venezuela. Atmósfera, 29, 323342, https://doi.org/10.20937/ATM.2016.29.04.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. H., J. S. Kug, T. Li, and S. K. Behera, 2018: Predicting El Niño beyond 1-year lead: Effect of the Western Hemisphere warm pool. Sci. Rep., 8, 14 957, https://doi.org/10.1038/s41598-018-33191-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perdigón-Morales, J., R. Romero-Centeno, P. Ordóñez Pérez, and B. S. Barrett, 2018: The midsummer drought in Mexico: Perspectives on duration and intensity from the CHIRPS precipitation database. Int. J. Climatol., 38, 21742186, https://doi.org/10.1002/joc.5322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., D. Gu, G. Lambert, T. Li, D. Halpern, N. C. Lau, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972, https://doi.org/10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poveda, G., P. R. Waylen, and R. S. Pulwarty, 2006: Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol., 234, 327, https://doi.org/10.1016/j.palaeo.2005.10.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauscher, S. A., F. Kucharski, and D. B. Enfield, 2011: The role of regional SST warming variations in the drying of Meso-America in future climate projections. J. Climate, 24, 20032016, https://doi.org/10.1175/2010JCLI3536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero-Centeno, R., J. Zavala-Hidalgo, A. Gallegos, and J. J. O’Brien, 2003: Isthmus of Tehuantepec wind climatology and ENSO signal. J. Climate, 16, 26282639, https://doi.org/10.1175/1520-0442(2003)016<2628:IOTWCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero-Centeno, R., J. Zavala-Hidalgo, and G. B. Raga, 2007: Midsummer gap winds and low-level circulation over the eastern tropical Pacific. J. Climate, 20, 37683784, https://doi.org/10.1175/JCLI4220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rueda-Roa, D. T., and F. E. Muller-Karger, 2013: The southern Caribbean upwelling system: Sea surface temperature, wind forcing and chlorophyll concentration patterns. Deep-Sea Res. I, 78, https://doi.org/10.1016/j.dsr.2013.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., J. A. Carton, and S. Nigam, 2000: Structure of interannual-to-decadal climate variability in the tropical Atlantic sector. J. Climate, 13, 32853297, https://doi.org/10.1175/1520-0442(2000)013<3285:SOITDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1996: Fundamentals of Atmospheric Physics. Vol. 61, Academic Press, 627 pp.

  • Servain, J., and D. M. Legler, 1986: Empirical orthogonal function analyses of tropical Atlantic sea surface temperature and wind stress: 1964–1979. J. Geophys. Res., 91, 14 18114 191, https://doi.org/10.1029/JC091iC12p14181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, J. M., M. A. Taylor, and A. A. Chen, 2004: The effect of concurrent sea-surface temperature anomalies in the tropical Pacific and Atlantic on Caribbean rainfall. Int. J. Climatol., 24, 15311541, https://doi.org/10.1002/joc.1068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stumpf, H. G., 1975: Satellite detection of upwelling in the Gulf of Tehuantepec, Mexico. J. Phys. Oceanogr., 5, 383388, https://doi.org/10.1175/1520-0485(1975)005<0383:SDOUIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., W. A. Norton, and S. P. Jewson, 2000: The North Atlantic Oscillation—What role for the ocean? Atmos. Sci. Lett., 1, 89100, https://doi.org/10.1006/asle.2000.0018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., D. B. Enfield, and A. A. Chen, 2002: Influence of the tropical Atlantic versus the tropical Pacific on Caribbean rainfall. J. Geophys. Res., 107, 3127, https://doi.org/10.1029/2001JC001097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vázquez-Aguirre, J. L., 2007: Variabilidad de la precipitación en la República Mexicana, M.S. Thesis, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 110 pp.

  • Verdin, A., C. Funk, B. Rajagopalan, and W. Kleiber, 2016: Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems. IEEE Trans. Geosci. Remote Sens., 54, 25522562, https://doi.org/10.1109/TGRS.2015.2502956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Von Storch, H., and F. W. Zwiers, 2002: Statistical Analysis in Climate Research. Cambridge University Press, 495 pp.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576, https://doi.org/10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2004: ENSO, Atlantic climate variability, and the Walker and Hadley circulations. The Hadley Circulation: Present, Past, and Future, Springer, 173–202.

    • Crossref
    • Export Citation
  • Wang, C., 2007: Variability of the Caribbean low-level jet and its relations to climate. Climate Dyn., 29, 411422, https://doi.org/10.1007/s00382-007-0243-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and D. B. Enfield, 2001: The tropical Western Hemisphere warm pool. Geophys. Res. Lett., 28, 16351638, https://doi.org/10.1029/2000GL011763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., S. K. Lee, and D. B. Enfield, 2008: Climate response to anomalously large and small Atlantic warm pools during the summer. J. Climate, 21, 24372450, https://doi.org/10.1175/2007JCLI2029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waylen, P. R., C. N. Caviedes, and M. E. Quesada, 1996: Interannual variability of monthly precipitation in Costa Rica. J. Climate, 9, 26062613, https://doi.org/10.1175/1520-0442(1996)009<2606:IVOMPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whyte, F. S., M. A. Taylor, T. S. Stephenson, and J. D. Campbell, 2008: Features of the Caribbean low level jet. Int. J. Climatol., 28, 119128, https://doi.org/10.1002/joc.1510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, 627 pp.

  • Zárate-Hernández, E., 2013: Climatología de masas invernales de aire frío que alcanzan Centroamérica y el Caribe y su relación con algunos índices árticos. Top. Meteor. Oceanogr., 12, 3555.

    • Search Google Scholar
    • Export Citation
  • Zavala-Hidalgo, J., A. Parés-Sierra, and J. Ochoa, 2002: Seasonal variability of the temperature and heat fluxes in the Gulf of Mexico. Atmósfera, 15, 81104.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 109 109 17
PDF Downloads 91 91 12

Coupled Interannual Variability of Wind and Sea Surface Temperature in the Caribbean Sea and the Gulf of Mexico

View More View Less
  • 1 Posgrado en Ciencias de la Tierra, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
  • 2 Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
  • 3 Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona
  • 4 Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
© Get Permissions
Restricted access

Abstract

This work describes dominant patterns of coupled interannual variability of the 10-m wind and sea surface temperature in the Caribbean Sea and the Gulf of Mexico (CS&GM) during the period 1982–2016. Using a canonical correlation analysis (CCA) between the monthly mean anomalies of these fields, four coupled variability modes are identified: the dipole (March–April), transition (May–June), interocean (July–October), and meridional-wind (November–February) modes. Results show that El Niño–Southern Oscillation (ENSO) influences almost all the CS&GM coupled modes, except the transition mode, and that the North Atlantic Oscillation (NAO) in February has a strong negative correlation with the dipole and transition modes. The antisymmetric relationships found between the dipole mode and the NAO and ENSO indices confirm previous evidence about the competing remote forcings of both teleconnection patterns on the tropical North Atlantic variability. Precipitation in the CS and adjacent oceanic and land areas is sensitive to the wind–SST coupled variability modes from June to October. These modes seem to be strongly related to the interannual variability of the midsummer drought and the meridional migration of the intertropical convergence zone in the eastern Pacific. These findings may eventually lead to improving seasonal predictability in the CS&GM and surrounding land areas.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0573.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rosario Romero-Centeno, rosario@atmosfera.unam.mx

Abstract

This work describes dominant patterns of coupled interannual variability of the 10-m wind and sea surface temperature in the Caribbean Sea and the Gulf of Mexico (CS&GM) during the period 1982–2016. Using a canonical correlation analysis (CCA) between the monthly mean anomalies of these fields, four coupled variability modes are identified: the dipole (March–April), transition (May–June), interocean (July–October), and meridional-wind (November–February) modes. Results show that El Niño–Southern Oscillation (ENSO) influences almost all the CS&GM coupled modes, except the transition mode, and that the North Atlantic Oscillation (NAO) in February has a strong negative correlation with the dipole and transition modes. The antisymmetric relationships found between the dipole mode and the NAO and ENSO indices confirm previous evidence about the competing remote forcings of both teleconnection patterns on the tropical North Atlantic variability. Precipitation in the CS and adjacent oceanic and land areas is sensitive to the wind–SST coupled variability modes from June to October. These modes seem to be strongly related to the interannual variability of the midsummer drought and the meridional migration of the intertropical convergence zone in the eastern Pacific. These findings may eventually lead to improving seasonal predictability in the CS&GM and surrounding land areas.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0573.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rosario Romero-Centeno, rosario@atmosfera.unam.mx

Supplementary Materials

    • Supplemental Materials (PDF 6.09 MB)
Save