• Aas, K., and D. Berg, 2009: Models for construction of multivariate dependence–A comparison study. Eur. J. Finance, 15, 639659, https://doi.org/10.1080/13518470802588767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aas, K., C. Czado, A. Frigessi, and H. Bakken, 2009: Pair-copula constructions of multiple dependence. Insur. Math. Econ., 44, 182198, https://doi.org/10.1016/j.insmatheco.2007.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., L. Cheng, O. Mazdiyasni, and A. Farahmand, 2014: Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys. Res. Lett., 41, 88478852, https://doi.org/10.1002/2014GL062308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedford, T., and R. M. Cooke, 2002: Vines: A new graphical model for dependent random variables. Ann. Stat., 30, 10311068, https://doi.org/10.1214/aos/1031689016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beniston, M., 2004: The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett., 31, L02202, https://doi.org/10.1029/2003gl018857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brechmann, E. C., and U. Schepsmeier, 2013: Modeling dependence with C-and D-vine copulas: The R-package CDVine. J. Stat. Software, 52, 127, https://doi.org/10.18637/jss.v052.i03.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., and Coauthors, 2016: Implementing and evaluating variable soil thickness in the Community Land Model, version 4.5 (CLM4. 5). J. Climate, 29, 34413461, https://doi.org/10.1175/JCLI-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cancelliere, A., and J. D. Salas, 2004: Drought length properties for periodic-stochastic hydrologic data. Water Resour. Res., 40, W02503, https://doi.org/10.1029/2002WR001750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, F. C., and J. M. Wallace, 1987: Meteorological conditions during heat waves and droughts in the United States Great Plains. Mon. Wea. Rev., 115, 12531269, https://doi.org/10.1175/1520-0493(1987)115<1253:MCDHWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., V. P. Singh, S. Guo, A. K. Mishra, and J. Guo, 2013: Drought analysis using copulas. J. Hydrol. Eng., 18, 797808, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, F., O. Mazdiyasni, and A. AghaKouchak, 2018: Amplified warming of droughts in southern United States in observations and model simulations. Sci. Adv., 4, eaat2380, https://doi.org/10.1126/sciadv.aat2380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, https://doi.org/10.1007/s00382-014-2075-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv., 1, e1400082, https://doi.org/10.1126/sciadv.1400082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czado, C., U. Schepsmeier, and A. Min, 2012: Maximum likelihood estimation of mixed C-vines with application to exchange rates. Stat. Modell., 12, 229255, https://doi.org/10.1177/1471082X1101200302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, https://doi.org/10.1038/nclimate1633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2006: The hydrologic feedback pathway for land–climate coupling. J. Hydrometeor., 7, 857867, https://doi.org/10.1175/JHM526.1.

  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, https://doi.org/10.1029/2010GL046582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., J. M. Wallace, and D. P. Lettenmaier, 2000: Dependence of extreme daily maximum temperatures on antecedent soil moisture in the contiguous United States during summer. J. Climate, 13, 26412651, https://doi.org/10.1175/1520-0442(2000)013<2641:DOEDMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, https://doi.org/10.1029/97WR03499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., and P. Viterbo, 2006: The European summer of 2003: Sensitivity to soil water initial conditions. J. Climate, 19, 36593680, https://doi.org/10.1175/JCLI3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär, 2007a: Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, https://doi.org/10.1029/2006GL029068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007b: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, https://doi.org/10.1175/JCLI4288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and Coauthors, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 1721, https://doi.org/10.1038/ngeo1032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and Coauthors, 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, https://doi.org/10.1175/JCLI-D-12-00270.1.

  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joe, H., 1996: Families of m-variate distributions with given margins and m(m − 1)/2 bivariate dependence parameters. Distributions with Fixed Marginals and Related Topics, Lecture Notes Monogr., Vol. 28, 120–141, Institute of Mathematical Statistics, https://doi.org/10.1214/lnms/1215452614.

    • Crossref
    • Export Citation
  • Joe, H., 1997: Multivariate Models and Multivariate Dependence Concepts. CRC Press, 424 pp.

    • Crossref
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. Kam, F. Zeng, and A. T. Wittenberg, 2018: CMIP5 model-based assessment of anthropogenic influence on record global warmth during 2016. Bull. Amer. Meteor. Soc., 99, S11S15, https://doi.org/10.1175/BAMS-D-17-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowicka, D., 2011: Dependence Modeling: Vine Copula Handbook. World Scientific, 360 pp.

    • Crossref
    • Export Citation
  • Kurowicka, D., and R. M. Cooke, 2007: Sampling algorithms for generating joint uniform distributions using the vine-copula method. Comput. Stat. Data Anal., 51, 28892906, https://doi.org/10.1016/j.csda.2006.11.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., L. Cheng, Z. Hao, J. Li, A. Thorstensen, and H. Gao, 2018: A framework for exploring joint effects of conditional factors on compound floods. Water Resour. Res., 54, 26812696, https://doi.org/10.1002/2017WR021662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., and M. P. Hoerling, 2016: The physics of drought in the U.S. central Great Plains. J. Climate, 29, 67836804, https://doi.org/10.1175/JCLI-D-15-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, R., E. B. Jaeger, and S. I. Seneviratne, 2010: Persistence of heat waves and its link to soil moisture memory. Geophys. Res. Lett., 37, L09703, https://doi.org/10.1029/2010GL042764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., and R. M. Dole, 1995: A diagnostic comparison of the 1980 and 1988 U.S. summer heat wave-droughts. J. Climate, 8, 16581675, https://doi.org/10.1175/1520-0442(1995)008<1658:ADCOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madadgar, S., and H. Moradkhani, 2013: Drought analysis under climate change using copula. J. Hydrol. Eng., 18, 746759, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J. F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1 (WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, A., and C. Czado, 2010: Bayesian inference for multivariate copulas using pair-copula constructions. J. Financ. Econ., 8, 511546, https://doi.org/10.1093/jfinec/nbp031.

    • Search Google Scholar
    • Export Citation
  • Mirabbasi, R., A. Fakheri-Fard, and Y. Dinpashoh, 2012: Bivariate drought frequency analysis using the copula method. Theor. Appl. Climatol., 108, 191206, https://doi.org/10.1007/s00704-011-0524-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., A. J. Teuling, C. C. Van Heerwaarden, and J. V. G. de Arellano, 2014: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci., 7, 345349, https://doi.org/10.1038/ngeo2141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2015: Heat wave flash droughts in decline. Geophys. Res. Lett., 42, 28232829, https://doi.org/10.1002/2015GL064018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1966: Nature and possible causes of the northeastern United States drought during 1962–65. Mon. Wea. Rev., 94, 543557, https://doi.org/10.1175/1520-0493(1966)094<0543:NAPCOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1983: Some causes of United States droughts. J. Climate Appl. Meteor., 22, 3039, https://doi.org/10.1175/1520-0450(1983)022<0030:SCOUSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCDC, 2012: State of the climate, national overview. National Climate Report—July 2012, NOAA, http://www.ncdc.noaa.gov/sotc/national/2012/7.

  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, https://doi.org/10.1175/2008JCLI2244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. Weather Bureau Research Paper 45, U.S. Department of Commerce, 58 pp., http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.

  • Peterson, T. C., and Coauthors, 2013: Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge. Bull. Amer. Meteor. Soc., 94, 821834, https://doi.org/10.1175/BAMS-D-12-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, X., S. Li, C. Lv, and Z. Zhang, 2014: Sequential dependence modeling using Bayesian theory and D-vine copula and its application on chemical process risk prediction. Ind. Eng. Chem. Res., 53, 14 78814 801, https://doi.org/10.1021/ie501863u.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, W. J., Z. M. Subin, D. M. Lawrence, S. C. Swenson, M. S. Torn, L. Meng, N. M. Mahowald, and P. Hess, 2011: Barriers to predicting changes in global terrestrial methane fluxes: Analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences, 8, 19251953, https://doi.org/10.5194/bg-8-1925-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarhadi, A., M. C. Ausín, M. P. Wiper, D. Touma, and N. S. Diffenbaugh, 2018: Multidimensional risk in a nonstationary climate: Joint probability of increasingly severe warm and dry conditions. Sci. Adv., 4, eaau3487, https://doi.org/10.1126/sciadv.aau3487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., P. L. Vidale, D. Luthi, and C. Frei, 2004: The role of increasing temperature variability in European summer heat waves. Nature, 427, 332336, https://doi.org/10.1038/nature02300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schepsmeier, U., and Coauthors, 2012: VineCopula: Statistical inference of vine copulas. R-Project CRAN Repository, https://cran.r-project.org/web/packages/VineCopula/index.html.

  • Schirmacher, D., and E. Schirmacher, 2008: Multivariate dependence modeling using pair-copulas. Tech. Rep., 2008 Energy Risk Management Symposium, Chicago, IL, Society of Actuaries, 52 pp, https://www.soa.org/globalassets/assets/files/resources/essays-monographs/2008-erm-symposium/mono-2008-m-as08-1-schirmacher.pdf.

  • Seaber, P. R., F. P. Kapinos, and G. L. Knapp, 1987: Hydrologic unit maps. USGS Water-Supply Paper 2294, 66 pp., http://pubs.usgs.gov/wsp/wsp2294/pdf/wsp_2294.pdf.

  • Seager, R., and M. Hoerling, 2014: Atmosphere and ocean origins of North American droughts. J. Climate, 27, 45814606, https://doi.org/10.1175/JCLI-D-13-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, https://doi.org/10.1038/nature05095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sklar, A., 1959: Fonctions de répartition á n dimensions et leurs marges. Publications of the Institute of Statistics of the University of Paris, Vol. 8, University of Paris, Paris, France, 229231.

    • Search Google Scholar
    • Export Citation
  • Song, S., and V.P. Singh, 2010: Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stochastic Environ. Res. Risk Assess., 24, 425444, https://doi.org/10.1007/s00477-009-0331-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stefanon, M., F. D’Andrea, and P. Drobinski, 2012: Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett., 7, 014023, https://doi.org/10.1088/1748-9326/7/1/014023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2017: Causes of extreme ridges that induce California droughts. J. Climate, 30, 14771492, https://doi.org/10.1175/JCLI-D-16-0524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, G. A. Meehl, and W. M. Washington, 2016: Projected intensification of subseasonal temperature variability and heat waves in the Great Plains. Geophys. Res. Lett., 43, 21652173, https://doi.org/10.1002/2015GL067574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidale, P. L., D. Lüthi, R. Wegmann, and C. Schär, 2007: European summer climate variability in a heterogeneous multi-model ensemble. Climatic Change, 81, 209232, https://doi.org/10.1007/s10584-006-9218-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J., and Coauthors, 2014: Our changing climate. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 19–67, https://doi.org/10.7930/J0KW5CXT.

    • Crossref
    • Export Citation
  • Wang, S. Y., M. L’Heureux, and J. H. Yoon, 2013: Are greenhouse gases changing ENSO precursors in the western North Pacific? J. Climate, 26, 63096322, https://doi.org/10.1175/JCLI-D-12-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. C. Wang, and L. R. Leung, 2008: Contribution of land-atmosphere coupling to summer climate variability over the contiguous United States. J. Geophys. Res., 113, D22109, https://doi.org/10.1029/2008JD010136.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 320 320 140
PDF Downloads 199 199 59

Physical Understanding of Human-Induced Changes in U.S. Hot Droughts Using Equilibrium Climate Simulations

View More View Less
  • 1 Department of Geosciences, University of Arkansas, Fayetteville, Arkansas
  • 2 Physical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado
  • 3 Department/Center of Water Resources and Environment, and Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, Sun Yat-Sen University, Guangzhou, China
  • 4 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Although the link between droughts and heat waves is widely recognized, how climate change affects this link remains uncertain. Here we assess how, and by how much, human-induced climate change affects summertime hot drought compound events over the contiguous United States. Results are derived by comparing hot drought statistics in long simulations of a coupled climate model (CESM1) subjected to year-1850 and year-2000 radiative forcings. Within each climate state, a strong and nonlinear dependency of heat-wave intensity on drought severity is found in water-limited regions of the southern Great Plains and southwestern United States whereas heat-wave intensity is found to be insensitive to drought severity in energy-limited regions of the northern and/or northeastern United States. Applying a statistical model that is based on pair-copula constructions, we find that anthropogenic warming leads to enhanced soil moisture–temperature coupling in water-limited areas of the southern Great Plains and/or southwestern United States and consequently amplifies the intensity of extreme heat waves during severe droughts. This strengthened coupling accounts for a substantial fraction of rising temperature extremes related to the long-term climate change in CESM1, highlighting the importance of changes in land–atmosphere feedback in a warmer climate. In contrast, coupling effects remain weak and largely unchanged in energy-limited regions, thereby yielding no appreciable contribution to heat-wave intensification over the northern and/or northeastern United States apart from the long-term warming effects.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0611.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Linyin Cheng, lc032@uark.edu

Abstract

Although the link between droughts and heat waves is widely recognized, how climate change affects this link remains uncertain. Here we assess how, and by how much, human-induced climate change affects summertime hot drought compound events over the contiguous United States. Results are derived by comparing hot drought statistics in long simulations of a coupled climate model (CESM1) subjected to year-1850 and year-2000 radiative forcings. Within each climate state, a strong and nonlinear dependency of heat-wave intensity on drought severity is found in water-limited regions of the southern Great Plains and southwestern United States whereas heat-wave intensity is found to be insensitive to drought severity in energy-limited regions of the northern and/or northeastern United States. Applying a statistical model that is based on pair-copula constructions, we find that anthropogenic warming leads to enhanced soil moisture–temperature coupling in water-limited areas of the southern Great Plains and/or southwestern United States and consequently amplifies the intensity of extreme heat waves during severe droughts. This strengthened coupling accounts for a substantial fraction of rising temperature extremes related to the long-term climate change in CESM1, highlighting the importance of changes in land–atmosphere feedback in a warmer climate. In contrast, coupling effects remain weak and largely unchanged in energy-limited regions, thereby yielding no appreciable contribution to heat-wave intensification over the northern and/or northeastern United States apart from the long-term warming effects.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0611.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Linyin Cheng, lc032@uark.edu

Supplementary Materials

    • Supplemental Materials (PDF 307.46 KB)
Save