• Abernathey, R. P., I. Cerovečki, P. R. Holland, E. Newsom, M. Mazloff, and L. D. Talley, 2016: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci., 9, 596601, https://doi.org/10.1038/ngeo2749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, K. K., and Coauthors, 2004: High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147151, https://doi.org/10.1038/nature02805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, S., P. Diz, M. J. Vautravers, J. Pike, G. Knorr, I. R. Hall, and W. S. Broecker, 2009: Interhemispheric Atlantic seesaw response during the last deglaciation. Nature, 457, 10971102, https://doi.org/10.1038/nature07770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., P. R. Gent, F. O. Bryan, A. F. Thompson, M. C. Long, and R. Abernathey, 2016: Southern Ocean overturning compensation in an eddy-resolving climate simulation. J. Phys. Oceanogr., 46, 15751592, https://doi.org/10.1175/JPO-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blunier, T., and E. J. Brook, 2001: Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109112, https://doi.org/10.1126/science.291.5501.109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4, 7989, https://doi.org/10.5670/oceanog.1991.07.

  • Buizert, C., and A. Schmittner, 2015: Southern Ocean control of glacial AMOC stability and Dansgaard–Oeschger interstadial duration. Paleoceanogr., 30, 15951612, https://doi.org/10.1002/2015PA002795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizert, C., and Coauthors, 2015a: Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 520, 661664, https://doi.org/10.1038/nature14401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizert, C., and Coauthors, 2015b: The WAIS Divide deep ice core WD2014 chronology—Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference. Climate Past, 11, 153173, https://doi.org/10.5194/cp-11-153-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cimatoribus, A. A., S. S. Drijfhout, and H. A. Dijkstra, 2014: Meridional overturning circulation: Stability and ocean feedbacks in a box model. Climate Dyn., 42, 311328, https://doi.org/10.1007/s00382-012-1576-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., 1992: North Atlantic deep water cools the Southern Hemisphere. Paleoceanogr, 7, 489497, https://doi.org/10.1029/92PA01058.

  • Curry, W. B., and D. W. Oppo, 2005: Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanogr., 20, PA1017, https://doi.org/10.1029/2004PA001021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., and Coauthors, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218220, https://doi.org/10.1038/364218a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Boer, A. M. D., and A. McC. Hogg, 2014: Control of the glacial carbon budget by topographically induced mixing. Geophys. Res. Lett., 41, 42774284, https://doi.org/10.1002/2014GL059963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, F. Roquet, R. M. Holmes, and T. J. McDougall, 2017: Abyssal ocean overturning shaped by seafloor distribution. Nature, 551, 181186, https://doi.org/10.1038/nature24472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., M. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson, 2014: An ocean tale of two climates: Modern and Last Glacial Maximum. Proc. Natl. Acad. Sci. USA, 111, 87538758, https://doi.org/10.1073/pnas.1323922111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, E., and C. de Lavergne, 2019: Response of a comprehensive climate model to a broad range of external forcings: Relevance for deep ocean ventilation and the development of late Cenozoic ice ages. Climate Dyn., 52, 653679, https://doi.org/10.1007/s00382-018-4157-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model of the structure for the oceanic pycnocline. Science, 283, 20772079, https://doi.org/10.1126/science.283.5410.2077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91, 50375046, https://doi.org/10.1029/JC091iC04p05037.

  • Gottschalk, J., L. C. Skinner, S. Misra, C. Waelbroeck, L. Menviel, and A. Timmermann, 2015: Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard–Oeschger events. Nat. Geosci., 8, 950954, https://doi.org/10.1038/ngeo2558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252, https://doi.org/10.1175/JPO2980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haumann, F. A., N. Gruber, M. Münnich, I. Frenger, and S. Kern, 2016: Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537, 8992, https://doi.org/10.1038/nature19101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, F., J. D. Shakun, P. U. Clark, A. E. Carlson, Z. Liu, B. L. Otto-Bliesner, and J. E. Kutzbach, 2013: Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature, 494, 8185, https://doi.org/10.1038/nature11822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henry, L. G., J. F. McManus, W. B. Curry, N. L. Roberts, A. M. Piotrowski, and L. D. Keigwin, 2016: North Atlantic Ocean circulation and abrupt climate change during the last glaciation. Science, 353, 470474, https://doi.org/10.1126/science.aaf5529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, S. K. V., A. F. Thompson, and J. F. Adkins, 2019: The role of the Southern Ocean in abrupt transitions and hysteresis in glacial ocean circulation. Paleoceanogr. Paleoclimatol., 34, 490510, https://doi.org/10.1029/2018PA003415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., 2017: Glacial ocean circulation and stratification explained by reduced atmospheric temperature. Proc. Natl. Acad. Sci. USA, 114, 4550, https://doi.org/10.1073/pnas.1610438113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., and L.-P. Nadeau, 2019: A toy model for the response of the residual overturning circulation to surface warming. J. Phys. Oceanogr., 49, 12491268, https://doi.org/10.1175/JPO-D-18-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36, 3953, https://doi.org/10.1016/0198-0149(89)90017-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2002: A theory for the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr., 32, 11211132, https://doi.org/10.1175/1520-0485(2002)032<1121:ATFTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., D. P. Marshall, and D. A. J. Sproson, 2007: Reconciling theories of a mechanically driven meridional overturning circulation with thermohaline forcing and multiple equilibria. Climate Dyn., 29, 821836, https://doi.org/10.1007/s00382-007-0262-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and P. Cessi, 2016: Interbasin transport of the meridional overturning circulation. J. Phys. Oceanogr., 46, 11571169, https://doi.org/10.1175/JPO-D-15-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawase, M., 1987: Establishment of deep ocean circulation driven by deep-water production. J. Phys. Oceanogr., 17, 22942317, https://doi.org/10.1175/1520-0485(1987)017<2294:EODOCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landais, A., and Coauthors, 2015: A review of the bipolar see-saw from synchronized and high resolution ice core water stable isotope records from Greenland and East Antarctica. Quat. Sci. Rev., 114, 1832, https://doi.org/10.1016/j.quascirev.2015.01.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lippold, J., J. Grützner, D. Winter, Y. Lahaye, A. Mangini, and M. Christl, 2009: Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic meridional overturning circulation. Geophys. Res. Lett., 36, L12601, https://doi.org/10.1029/2009GL038068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2009: Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325, 310314, https://doi.org/10.1126/science.1171041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Lynch-Stieglitz, J., 2017: The Atlantic Meridional Overturning Circulation and abrupt climate change. Annu. Rev. Mar. Sci., 9, 83104, https://doi.org/10.1146/annurev-marine-010816-060415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markle, B. R., and Coauthors, 2017: Global atmospheric teleconnections during Dansgaard–Oeschger events. Nat. Geosci., 10, 3642, https://doi.org/10.1038/ngeo2848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201222, https://doi.org/10.1357/0022240973224373.

  • Marshall, D., and L. Zanna, 2014: A conceptual model of ocean heat uptake under climate change. J. Climate, 27, 84448465, https://doi.org/10.1175/JCLI-D-13-00344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzocchi, A., and M. F. Jansen, 2017: Connecting Antarctic sea ice to deep-ocean circulation in modern and glacial climate simulations. Geophys. Res. Lett., 44, 62866295, https://doi.org/10.1002/2017GL073936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McManus, J. F., R. Francois, J.-M. Gherardi, L. D. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834837, https://doi.org/10.1038/nature02494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. McC. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the southern annular mode. Geophys. Res. Lett., 33, L16608, https://doi.org/10.1029/2006GL026499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. D., J. F. Adkins, D. Menemenlis, and M. P. Schodlok, 2012: The role of ocean cooling in setting glacial southern source bottom water salinity. Paleoceanogr., 27, PA3207, https://doi.org/10.1029/2012PA002297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muglia, J., and A. Schmittner, 2015: Glacial Atlantic overturning increased by wind stress in climate models. Geophys. Res. Lett., 42, 98629868, https://doi.org/10.1002/2015GL064583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, https://doi.org/10.1175/JPO-D-12-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, https://doi.org/10.1175/2010JPO4529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, https://doi.org/10.1175/JPO-D-11-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., G. C. Johnson, and J. L. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55109, https://doi.org/10.1016/S0079-6611(99)00004-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedro, J. B., M. Jochum, C. Buizert, F. He, S. Barker, and S. O. Rasmussen, 2018: Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling. Quat. Sci. Rev., 192, 2746, https://doi.org/10.1016/j.quascirev.2018.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellichero, V., J.-B. Sallée, C. C. Chapman, and S. Downes, 2018: The Southern Ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes. Nat. Commun., 9, 1789, https://doi.org/10.1038/s41467-018-04101-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, https://doi.org/10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. McC. Hogg, 2012: An analytical model of the response of the meridional overturning circulation to changes in wind and buoyancy forcing. J. Phys. Oceanogr., 42, 12701287, https://doi.org/10.1175/JPO-D-11-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, L. C., and Coauthors, 2017: Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2. Nat. Commun., 8, 16010, https://doi.org/10.1038/ncomms16010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and S. J. Johnsen, 2003: A minimum thermodynamic model for the bipolar seesaw. Paleoceanogr., 18, 1087, https://doi.org/10.1029/2003PA000920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., I. Eisenman, and A. L. Stewart, 2016: The influence of Southern Ocean surface buoyancy forcing on glacial–interglacial changes in the global deep ocean stratification. Geophys. Res. Lett., 43, 81248132, https://doi.org/10.1002/2016GL070058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. L. Stewart, and T. Bischoff, 2016: A multi-basin residual-mean model for the global overturning circulation. J. Phys. Oceanogr., 46, 25832604, https://doi.org/10.1175/JPO-D-15-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. II, 42, 477500, https://doi.org/10.1016/0967-0637(95)00012-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, https://doi.org/10.3402/tellusa.v34i2.10801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitworth, T., III, A. H. Orsi, S.-J. Kim, W. D. Nowlin, and R. A. Locarnini, 1998: Water masses and mixing near the Antarctic Slope Front. Ocean Ice and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. F. Weiss, Eds., Antarctic Research Series, Vol. 75, Amer. Geophys. Union, 1–27, https://doi.org/10.1029/AR075p0001.

    • Crossref
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810, https://doi.org/10.1175/2011JPO4570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2015: Multiple regimes and low-frequency variability in the quasi-adiabatic overturning circulation. J. Phys. Oceanogr., 45, 16901708, https://doi.org/10.1175/JPO-D-14-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2006: Abrupt climate change: An alternative view. Quat. Res., 65, 191203, https://doi.org/10.1016/j.yqres.2005.10.006.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 143 143 51
PDF Downloads 118 118 45

A Southern Ocean Mechanism for the Interhemispheric Coupling and Phasing of the Bipolar Seesaw

View More View Less
  • 1 California Institute of Technology, Pasadena, California
  • 2 Lamont–Doherty Earth Observatory, Palisades, New York
  • 3 California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

The last glacial period is punctuated by abrupt changes in Northern Hemisphere temperatures that are known as Dansgaard–Oeschger (DO) events. A striking and largely unexplained feature of DO events is an interhemispheric asymmetry characterized by cooling in Antarctica during periods of warming in Greenland and vice versa—the bipolar seesaw. Methane-synchronized ice core records indicate that the Southern Hemisphere lags the Northern Hemisphere by approximately 200 years. Here, we propose a mechanism that produces observed features of both the bipolar seesaw and the phasing of DO events. The spatial pattern of sea ice formation and melt in the Southern Ocean imposes a rigid constraint on where water masses are modified: waters are made denser near the coast where ice forms and waters are made lighter farther north where ice melts. This pattern, coupled to the tilt of density surfaces across the Southern Ocean and the stratification of the ocean basins, produces two modes of overturning corresponding to different bipolar seesaw states. We present evolution equations for a simplified ocean model that describes the transient adjustment of the basin stratification, the Southern Ocean surface density distribution, and the overturning strength as the ocean moves between these states in response to perturbations in North Atlantic Deep Water formation, which we take as a proxy for Greenland temperatures. Transitions between different overturning states occur over a multicentennial time scale, which is qualitatively consistent with the observed Southern Hemisphere lag. The volume of deep density layers varies inversely with the overturning strength, leading to significant changes in residence times. Evidence of these dynamics in more realistic circulation models is discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew F. Thompson, andrewt@caltech.edu

Abstract

The last glacial period is punctuated by abrupt changes in Northern Hemisphere temperatures that are known as Dansgaard–Oeschger (DO) events. A striking and largely unexplained feature of DO events is an interhemispheric asymmetry characterized by cooling in Antarctica during periods of warming in Greenland and vice versa—the bipolar seesaw. Methane-synchronized ice core records indicate that the Southern Hemisphere lags the Northern Hemisphere by approximately 200 years. Here, we propose a mechanism that produces observed features of both the bipolar seesaw and the phasing of DO events. The spatial pattern of sea ice formation and melt in the Southern Ocean imposes a rigid constraint on where water masses are modified: waters are made denser near the coast where ice forms and waters are made lighter farther north where ice melts. This pattern, coupled to the tilt of density surfaces across the Southern Ocean and the stratification of the ocean basins, produces two modes of overturning corresponding to different bipolar seesaw states. We present evolution equations for a simplified ocean model that describes the transient adjustment of the basin stratification, the Southern Ocean surface density distribution, and the overturning strength as the ocean moves between these states in response to perturbations in North Atlantic Deep Water formation, which we take as a proxy for Greenland temperatures. Transitions between different overturning states occur over a multicentennial time scale, which is qualitatively consistent with the observed Southern Hemisphere lag. The volume of deep density layers varies inversely with the overturning strength, leading to significant changes in residence times. Evidence of these dynamics in more realistic circulation models is discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew F. Thompson, andrewt@caltech.edu
Save