• Annamalai, H., K. Hamilton, and K. R. Sperber, 2007: The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20, 10711092, https://doi.org/10.1175/JCLI4035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., B. Taguchi, J. P. McCreary, M. Nagura, and T. Miyama, 2017: Systematic errors in South Asian monsoon simulation: Importance of equatorial Indian Ocean processes. J. Climate, 30, 81598178, https://doi.org/10.1175/JCLI-D-16-0573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aves, S., and R. H. Johnson, 2008: The diurnal cycle of convection over the northern South China Sea. J. Meteor. Soc. Japan, 86, 919934, https://doi.org/10.2151/jmsj.86.919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J.-P. Chaboureau, A. Beljaars, A. K. Betts, M. Köhler, M. Miller, and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, https://doi.org/10.1256/qj.03.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and J. V. Hurley, 2013: Thermodynamic bias in the multimodel mean boreal summer monsoon. J. Climate, 26, 22792287, https://doi.org/10.1175/JCLI-D-12-00493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, https://doi.org/10.1175/2008JCLI2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., F. Guichard, J.-L. Redelsperger, and J.-P. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130, 31053117, https://doi.org/10.1256/qj.03.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, W. C., 2013: Catastrophe-concept-based cumulus parameterization: Correction of systematic errors in the precipitation diurnal cycle over land in a GCM. J. Atmos. Sci., 70, 35993614, https://doi.org/10.1175/JAS-D-13-022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P.-J., 2016: Diurnal variation of convection over South China Sea region during summer monsoon onset. National Taiwan University, 67 pp., https://doi.org/10.6342/NTU201603207.

    • Crossref
    • Export Citation
  • Chen, T.-C., M.-C. Yen, and S.-P. Weng, 2000: Interaction between the summer monsoons in East Asia and the South China Sea: Intraseasonal monsoon modes. J. Atmos. Sci., 57, 13731392, https://doi.org/10.1175/1520-0469(2000)057<1373:IBTSMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., F. Zhang, and K. Zhao, 2016: Diurnal variations of the land–sea breeze and its related precipitation over south China. J. Atmos. Sci., 73, 47934815, https://doi.org/10.1175/JAS-D-16-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Pres, 1217–1308.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and R. H. Johnson, 2006: Contrasting characteristics of convection over the northern and southern South China Sea during SCSMEX. Mon. Wea. Rev., 134, 10411062, https://doi.org/10.1175/MWR3113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., G. A. Meehl, and J. M. Arblaster, 2012: Monsoon regimes and processes in CCSM4. Part II: African and American monsoon systems. J. Climate, 25, 26092621, https://doi.org/10.1175/JCLI-D-11-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, https://doi.org/10.1175/JCLI-D-11-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, https://doi.org/10.1256/qj.03.130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373396, https://doi.org/10.2151/jmsj1965.70.1B_373.

  • Gettelman, A., and Coauthors, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, https://doi.org/10.1029/2009JD013797.

    • Crossref
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172, https://doi.org/10.1256/qj.03.145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., and Z. Zhu, 2015: The relation of South China Sea monsoon onset with the subsequent rainfall over the subtropical East Asia. Int. J. Climatol., 35, 45474556, https://doi.org/10.1002/joc.4305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2010: Temporal relations of column water vapor and tropical precipitation. J. Atmos. Sci., 67, 10911105, https://doi.org/10.1175/2009JAS3284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1998: Convective trigger function for a mass-flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 25992620, https://doi.org/10.1175/1520-0493(1998)126<2599:CTFFAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., S. G. Geotis, F. D. Marks, and A. K. West, 1981: Winter monsoon convection in the vicinity of north Borneo. Part I: Structure and time variation of the clouds and precipitation. Mon. Wea. Rev., 109, 15951614, https://doi.org/10.1175/1520-0493(1981)109<1595:WMCITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22, http://link.springer.com/chapter/10.1007/978-90-481-2915-7_1.

  • Hung, C., and H.-H. Hsu, 2008: The first transition of the Asian summer monsoon, intraseasonal oscillation, and Taiwan mei-yu. J. Climate, 21, 15521568, https://doi.org/10.1175/2007JCLI1457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Export Citation
  • Jakob, C., and A. P. Siebesma, 2003: A new subcloud model for mass-flux convection schemes: Influence on triggering, updraft properties, and model climate. Mon. Wea. Rev., 131, 27652778, https://doi.org/10.1175/1520-0493(2003)131<2765:ANSMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2002: Characteristics of the 1998 summer monsoon onset over the northern South China Sea. J. Meteor. Soc. Japan, 80, 561578, https://doi.org/10.2151/jmsj.80.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., S. L. Aves, P. E. Ciesielski, and T. D. Keenan, 2005: Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Wea. Rev., 133, 131148, https://doi.org/10.1175/MWR-2843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-J., K. Takata, B. Wang, M. Watanabe, M. Kimoto, T. Yokohata, and T. Yasunari, 2011: Global monsoon, El Niño, and their interannual linkage simulated by MIROC5 and the CMIP3 CGCMs. J. Climate, 24, 56045618, https://doi.org/10.1175/2011JCLI4132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., H. Endo, K. Krishna Kumar, I. F. A. Cavalcanti, P. Goswami, and T. Zhou, 2013: Monsoons in a changing world: A regional perspective in a global context. J. Geophys. Res. Atmos., 118, 30533065, https://doi.org/10.1002/jgrd.50258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909, https://doi.org/10.1175/JAS3723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., J. D. Neelin, and C. R. Mechoso, 2017: Tropical convective transition statistics and causality in the water vapor–precipitation relation. J. Atmos. Sci., 74, 915931, https://doi.org/10.1175/JAS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and S. Yang, 1997: Climatology and interannual variability of the Southeast Asian summer monsoon. Adv. Atmos. Sci., 14, 141162, https://doi.org/10.1007/s00376-997-0016-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P.-H., and Coauthors, 2016: Interaction of convection over the Maritime Continent–SCS with large-scale flow: 2016 Winter Monsoon Pre-experiment. Atmos. Sci., 44, 237352.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709739, https://doi.org/10.5194/gmd-5-709-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., S. Xie, J. S. Boyle, S. A. Klein, and Y. Zhang, 2013: Metrics and diagnostics for precipitation-related processes in climate model short-range hindcasts. J. Climate, 26, 15161534, https://doi.org/10.1175/JCLI-D-12-00235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2014: On the correspondence between mean forecast errors and climate errors in CMIP5 models. J. Climate, 27, 17811798, https://doi.org/10.1175/JCLI-D-13-00474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2015: An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models. J. Adv. Model. Earth Syst., 7, 1810–1827, https://doi.org/10.1002/2015MS000490.

    • Crossref
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844, https://doi.org/10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039, https://doi.org/10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, https://doi.org/10.1175/2008JCLI2244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, https://doi.org/10.1175/2009JAS2962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M.-S., C.-H. Ho, J. Kim, and R. L. Elsberry, 2011: Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts. Climate Dyn., 37, 14831499, https://doi.org/10.1007/s00382-010-0922-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., C. S. Bretherton, and P. J. Rasch, 2014: Integrating cloud processes in the Community Atmosphere Model, version 5. J. Climate, 27, 68216856, https://doi.org/10.1175/JCLI-D-14-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and Coauthors, 2004: Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc., 85, 19031915, https://doi.org/10.1175/BAMS-85-12-1903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., and J. M. Fritsch, 1996: A general framework for convective trigger functions. Mon. Wea. Rev., 124, 24382452, https://doi.org/10.1175/1520-0493(1996)124<2438:AGFFCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W.-K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43, 10951113, https://doi.org/10.1175/1520-0450(2004)043<1095:SROLHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W.-K. Tao, and C.-L. Shie, 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor. Climatol., 46, 10981124, https://doi.org/10.1175/JAM2510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, and W.-K. Tao, 2008: Spectral retrieval of latent heating profiles from TRMM PR data. Part III: Estimating apparent moisture sink profiles over tropical oceans. J. Appl. Meteor. Climatol., 47, 620640, https://doi.org/10.1175/2007JAMC1738.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, S. Kida, W.-K. Tao, X. Zeng, C. Yokoyama, and T. L’Ecuyer, 2009: Spectral retrieval of latent heating profiles from TRMM PR data. Part IV: Comparisons of lookup tables from two- and three-dimensional cloud-resolving model simulations. J. Climate, 22, 55775594, https://doi.org/10.1175/2009JCLI2919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014a: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 16791697, https://doi.org/10.1175/JCLI-D-13-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014b: The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air–sea coupling improve the simulations? J. Climate, 27, 87618777, https://doi.org/10.1175/JCLI-D-14-00396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and H. Annamalai, 2014: The use of fractional accumulated precipitation for the evaluation of the annual cycle of monsoons. Climate Dyn., 43, 32193244, https://doi.org/10.1007/s00382-014-2099-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, https://doi.org/10.1007/s00382-012-1607-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., S. Shige, W.-K. Tao, and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 20302046, https://doi.org/10.1175/2009JCLI3110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, M., 1992: Intraseasonal oscillation and the onset and retreat dates of the summer monsoon over East, Southeast Asia and the western Pacific region using GMS high cloud amount data. J. Meteor. Soc. Japan, 70, 613629, https://doi.org/10.2151/jmsj1965.70.1B_613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S., L.-X. Chen, C.-P. Chang, and T. N. Krishnamurti, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, Oxford University Press, 60–92.

  • Tao, W.-K., and Coauthors, 2016: TRMM latent heating retrieval: Applications and comparisons with field campaigns and large-scale analyses. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., Vol. 56, Amer. Meteor. Soc., 2.1–2.34, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0013.1.

    • Crossref
    • Export Citation
  • Tsai, W.-M., and C.-M. Wu, 2017: The environment of aggregated deep convection. J. Adv. Model. Earth Syst., 9, 20612078, https://doi.org/10.1002/2017MS000967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans, 44, 165183, https://doi.org/10.1016/j.dynatmoce.2007.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., LinHo, Y. Zhang, and M.-M. Lu, 2004: Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon. J. Climate, 17, 699710, https://doi.org/10.1175/2932.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, https://doi.org/10.1029/2005GL022734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., F. Huang, Z. Wu, J. Yang, X. Fu, and K. Kikuchi, 2009: Multi-scale climate variability of the South China Sea monsoon: A review. Dyn. Atmos. Oceans, 47, 1537, https://doi.org/10.1016/j.dynatmoce.2008.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., H.-J. Kim, K. Kikuchi, and A. Kitoh, 2011: Diagnostic metrics for evaluation of annual and diurnal cycles. Climate Dyn., 37, 941955, https://doi.org/10.1007/s00382-010-0877-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J.-J., and L. D. Carey, 2005: The development and structure of an oceanic squall-line system during the South China Sea Monsoon Experiment. Mon. Wea. Rev., 133, 15441561, https://doi.org/10.1175/MWR2933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-C., H.-L. Pan, and H.-H. Hsu, 2015: Impacts of the triggering function of cumulus parameterization on warm-season diurnal rainfall cycles at the Atmospheric Radiation Measurement Southern Great Plains site. J. Geophys. Res. Atmos., 120, 10 68110 702, https://doi.org/10.1002/2015JD023337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wapler, K., and T. P. Lane, 2012: A case of offshore convective initiation by interacting land breezes near Darwin, Australia. Meteor. Atmos. Phys., 115, 123137, https://doi.org/10.1007/s00703-011-0180-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, https://doi.org/10.1029/97JC02719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2013: The Transpose-AMIP II Experiment and its application to the understanding of Southern Ocean cloud biases in climate models. J. Climate, 26, 32583274, https://doi.org/10.1175/JCLI-D-12-00429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2013: The effect of time steps and time-scales on parametrization suites. Quart. J. Roy. Meteor. Soc., 139, 548560, https://doi.org/10.1002/qj.1992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-H., and H.-H. Hsu, 2016: Role of the Indochina Peninsula narrow mountains in modulating the East Asian–western North Pacific summer monsoon. J. Climate, 29, 44454459, https://doi.org/10.1175/JCLI-D-15-0594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-H., N. Freychet, C.-A. Chen, and H.-H. Hsu, 2017: East Asian presummer precipitation in the CMIP5 at high versus low horizontal resolution. Int. J. Climatol., 37, 41584170, https://doi.org/10.1002/joc.5055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-H., M.-D. Chou, and Y.-H. Fong, 2018: Impact of the Himalayas on the Meiyu–Baiu migration. Climate Dyn., 50, 13071319, https://doi.org/10.1007/s00382-017-3686-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., B. Stevens, and A. Arakawa, 2009: What controls the transition from shallow to deep convection? J. Atmos. Sci., 66, 17931806, https://doi.org/10.1175/2008JAS2945.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and M. Zhang, 2000: Impact of the convection triggering function on single-column model simulations. J. Geophys. Res., 105, 14 98314 996, https://doi.org/10.1029/2000JD900170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., M. Zhang, J. S. Boyle, R. T. Cederwall, G. L. Potter, and W. Lin, 2004: Impact of a revised convective triggering mechanism on Community Atmosphere Model, version 2, simulations: Results from short-range weather forecasts. J. Geophys. Res., 109, D14102, https://doi.org/10.1029/2004JD004692.

    • Crossref
    • Export Citation
  • Xie, S., H. Ma, J.S. Boyle, S.A. Klein, and Y. Zhang, 2012: On the correspondence between short- and long-time-scale systematic errors in CAM4/CAM5 for the Year of Tropical Convection. J. Climate, 25, 7937–7955, https://doi.org/10.1175/JCLI-D-12-00134.1.

    • Crossref
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2018: Convective variability associated with the boreal summer intraseasonal oscillation in the South China Sea region. J. Climate, 31, 73637383, https://doi.org/10.1175/JCLI-D-18-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, S., S. Mori, M. Katsumata, B. Geng, K. Yasunaga, F. Syamsudin, Nurhayati, and K. Yoneyama, 2017: Diurnal cycle of precipitation observed in the western coastal area of Sumatra Island: Offshore preconditioning by gravity waves. Mon. Wea. Rev., 145, 37453761, https://doi.org/10.1175/MWR-D-16-0468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre General Circulation Model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., B. Wu, and B. Wang, 2009: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian–Australian monsoon? J. Climate, 22, 11591173, https://doi.org/10.1175/2008JCLI2245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2016: GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-Comparison Project. Geosci. Model Dev., 9, 35893604, https://doi.org/10.5194/gmd-9-3589-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y. P., and Coauthors, 2007: Use of high-resolution satellite observations to evaluate cloud and precipitation statistics from cloud-resolving model simulations. Part I: South China Sea Monsoon Experiment. J. Atmos. Sci., 64, 43094329, https://doi.org/10.1175/2007JAS2281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 136 136 17
PDF Downloads 72 72 21

Evaluating the Bias of South China Sea Summer Monsoon Precipitation Associated with Fast Physical Processes Using a Climate Model Hindcast Approach

View More View Less
  • 1 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • 2 Lawrence Livermore National Laboratory, Livermore, California
© Get Permissions
Restricted access

Abstract

The present study aims to identify the precipitation bias associated with the interactions among fast physical processes in the Community Atmospheric Model, version 5 (CAM5), during the abrupt onset of the South China Sea (SCS) summer monsoon, a key precursor of the overall East Asia summer monsoon (EASM). The multiyear hindcast approach is utilized to obtain the well-constrained synoptic-scale horizontal circulation each year during the onset period from the years 1998 to 2012. In the pre-onset period, the ocean precipitation over the SCS is insufficiently suppressed in CAM5 hindcasts and thus weaker land–ocean precipitation contrasts. This is associated with the weaker and shallower convection simulated over the surrounding land, producing weaker local circulation within the SCS basin. In the post-onset period, rainfall of the organized convection over the Philippine coastal ocean is underestimated in the hindcasts, with overestimated upper-level heating. These biases are further elaborated as the underrepresentation of the convection diurnal cycle and coastal convection systems, as well as the issue of precipitation sensitivity to environmental moisture during the SCS onset period. The biases identified in hindcasts are consistent with the general bias of the EASM in the climate simulation of CAM5. The current results highlight that the appropriate representation of land–ocean–convection interactions over coastal areas can potentially improve the simulation of seasonal transition over the monsoon regions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0660.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei-Ting Chen, weitingc@ntu.edu.tw

Abstract

The present study aims to identify the precipitation bias associated with the interactions among fast physical processes in the Community Atmospheric Model, version 5 (CAM5), during the abrupt onset of the South China Sea (SCS) summer monsoon, a key precursor of the overall East Asia summer monsoon (EASM). The multiyear hindcast approach is utilized to obtain the well-constrained synoptic-scale horizontal circulation each year during the onset period from the years 1998 to 2012. In the pre-onset period, the ocean precipitation over the SCS is insufficiently suppressed in CAM5 hindcasts and thus weaker land–ocean precipitation contrasts. This is associated with the weaker and shallower convection simulated over the surrounding land, producing weaker local circulation within the SCS basin. In the post-onset period, rainfall of the organized convection over the Philippine coastal ocean is underestimated in the hindcasts, with overestimated upper-level heating. These biases are further elaborated as the underrepresentation of the convection diurnal cycle and coastal convection systems, as well as the issue of precipitation sensitivity to environmental moisture during the SCS onset period. The biases identified in hindcasts are consistent with the general bias of the EASM in the climate simulation of CAM5. The current results highlight that the appropriate representation of land–ocean–convection interactions over coastal areas can potentially improve the simulation of seasonal transition over the monsoon regions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0660.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei-Ting Chen, weitingc@ntu.edu.tw

Supplementary Materials

    • Supplemental Materials (PDF 2.46 MB)
Save