• Aceituno, P., 1988: On the functioning of the Southern Oscillation in the South America sector. Part I: Surface climate. Mon. Wea. Rev., 116, 505524, https://doi.org/10.1175/1520-0493(1988)116<0505:OTFOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Automat. Contr., 19, 716723, https://doi.org/10.1109/TAC.1974.1100705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, V., R. Clarke, and P. Silva Días, Eds., 2006: Climate Change in La Plata Basin. CIMA/CONICET-UBA.

  • Bonan, G. B., 1997: Effects of land use on the climate of the United States. Climatic Change, 37, 449486, https://doi.org/10.1023/A:1005305708775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2002: Ecological Climatology: Concepts and Applications. Cambridge University Press, 678 pp.

  • Bounoua, L. E., G. J. Collatz, S. O. Los, P. J. Sellers, D. A. Dazlich, C. J. Tucker, and D. A. Randall, 2000: Sensitivity of climate to changes in NDVI. J. Climate, 13, 22772292, https://doi.org/10.1175/1520-0442(2000)013<2277:SOCTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life. Academic Press, 507 pp.

  • Caffera, R. M., and E. H. Berbery, 2002: La Plata basin climatology. Climate Change in the La Plata Basin. Inter-American Institute on Global Change, 16–34.

  • Chang, P., and Coauthors, 2006: Climate fluctuations of tropical coupled systems—The role of ocean dynamics. J. Climate, 19, 51225174, https://doi.org/10.1175/JCLI3903.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Channan, S., K. Collins, and W. R. Emanuel, 2014: Global mosaics of the standard MODIS land cover type data. University of Maryland and the Pacific Northwest National Laboratory, accessed 25 September 2018.

  • Coronel, G., A. Menendez, and L. Chamorro, 2002: Physiography and hydrology. Climate Change in the La Plata Basin. Inter-American Institute on Global Change, 44–59.

  • Coutinho, H. L., E. Noellemeyer, E. Jobbagy, M. Jonathan, and J. M. Paruelo, 2009: Impacts of land use change on ecosystems and society in the Rio de La Plata Basin. Applying Ecological Knowledge to Landuse Decisions, H. Tiessen and J. W. Stewart, Eds., IAI Publications, xxxx.

  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623, https://doi.org/10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., and A. Henderson-Sellers, 1988: Modeling tropical deforestation: A study of GCM land-surface parametrizations. Quart. J. Roy. Meteor. Soc., 114, 439462, https://doi.org/10.1002/qj.49711448009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didan, K., 2015: MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006 [Data set]. NASA EOSDIS LP DAAC, accessed 29 March 2018, https://doi.org/10.5067/MODIS/MOD13Q1.006.

    • Crossref
    • Export Citation
  • Didan, K., and A. Barreto, 2016: NASA MEaSUREs Vegetation Index and Phenology (VIP) Vegetation Indices Monthly Global 0.05 Deg CMG [Data set]. NASA EOSDIS Land Processes DAAC, accessed 19 August 2016, https://doi.org/10.5067/MEaSUREs/VIP/VIP30.004.

    • Crossref
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 2037, https://doi.org/10.1175/JHM557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO, 2016: AQUASTAT website: Food and Agriculture Organization of the United Nations (FAO). Accessed 12 May 2018, http://www.fao.org/nr/water/aquastat/basins/la-plata/index.stm.

  • Ferreira, L. J., C. Saulo, R. Juan, and M. Seluchi, 2006: The impact of land use changes over the low level circulation related to the northwestern Argentinean Low. Proc. Eighth Int. Conf. on Southern Hemisphere Meteorology and Oceanography (ICSHMO), Foz do Iguaçu, Brazil, INPE, 1029–1035.

  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L’Heveder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11, 23102324, https://doi.org/10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang, 2010: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, 2001–2012. Remote Sens. Environ., 114, 168182, https://doi.org/10.1016/j.rse.2009.08.016.

    • Search Google Scholar
    • Export Citation
  • Fukuoka, A., 1951: A study of 10-day forecast (a synthetic report). Geophys. Mag., 12, 177218.

  • Granger, C. W., 1969: Investigating causal relations by econometric models and cross-spectral models. Econometrica, 37, 424438, https://doi.org/10.2307/1912791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., 2003: The El Niño impact on the summer monsoon in Brazil: Regional processes versus remote influence. J. Climate, 16, 263280, https://doi.org/10.1175/1520-0442(2003)016<0263:TENIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., and T. Ambrizzi, 2009: Teleconnections into South America from the tropics and extratropics on interannual and intraseasonal timescales. Past Climate Variability in South America and Surrounding Regions, Developments in Paleoenvironmental Research, F. Vimeux, F. Sylvestre, and M. Khodri, Eds., Springer, 159–191.

    • Crossref
    • Export Citation
  • Grimm, A. M., S. E. Ferraz, and J. Gomes, 1998: Precipitation anomalies in Southern Brazil associated with El Niño and La Niña events. J. Climate, 11, 28632880, https://doi.org/10.1175/1520-0442(1998)011<2863:PAISBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., and Coauthors, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. 2. Analysis. J. Hydrometeor., 7, 611625, https://doi.org/10.1175/JHM511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, https://doi.org/10.1002/joc.1499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., and Coauthors, 2013: High-resolution global maps of 21st-century forest cover change. Science, 342, 850853, https://doi.org/10.1126/science.1244693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1984: Interannual variability and annual cycle: Mechanisms of circulation and climate in the tropical Atlantic. Mon. Wea. Rev., 112, 10971107, https://doi.org/10.1175/1520-0493(1984)112<1097:IVAACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hocking, R. R., 1976: The analysis and selection of variables in linear regression. Biometrics, 32, 149, https://doi.org/10.2307/2529336.

  • Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira, 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195213, https://doi.org/10.1016/S0034-4257(02)00096-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., A. R. Huete, K. Didan, and T. Miura, 2008: Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ., 112, 38333845, https://doi.org/10.1016/j.rse.2008.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. C. Mo, 1998: Interannual and intraseasonal variability in the Southern Hemisphere. Meteorology of the Southern Hemisphere, Meteor. Monogr., Vol. 49, Amer. Meteor. Soc., 307–336.

    • Crossref
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knist, S., and Coauthors, 2016: Land–atmosphere coupling in EURO-CORDEX evaluation experiments. J. Geophys. Res., 122, 79103, https://doi.org/10.1002/2016JD025476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. 1. Overview and results. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1967: Empirical eigenvectors of sea-level pressure, surface temperature. J. Appl. Meteor., 6, 791802, https://doi.org/10.1175/1520-0450(1967)006<0791:EEOSLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-J., and E. H. Berbery, 2012: Land cover change effects on the climate of the La Plata basin. J. Hydrometeor., 13, 84102, https://doi.org/10.1175/JHM-D-11-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. Kiladis, C. Vera, C. Saulo, and L. Carvalho, 2004: Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. J. Climate, 17, 38293842, https://doi.org/10.1175/1520-0442(2004)017<3829:SVORIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and N. Wen, 2008: On the assessment of nonlocal climate feedback. Part I: The generalized equilibrium feedback assessment. J. Climate, 21, 134148, https://doi.org/10.1175/2007JCLI1826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., N. Wen, and Y. Liu, 2008: On the assessment of nonlocal climate feedback. Part I: The generalized equilibrium feedback assessment. J. Climate, 21, 134148, https://doi.org/10.1175/2007JCLI1826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Department of Meteorology, MIT, Statistical Forecast Project Rep. 1, 98 pp.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., W. R. Soares, C. Saulo, and M. Nicolini, 2004: Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: Characteristics and temporal variability. J. Climate, 17, 22612280, https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and Coauthors, 2012: Recent developments on the South American monsoon system. Int. J. Climatol., 32, 121, https://doi.org/10.1002/joc.2254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., and F. Dominguez, 2014: Sources of atmospheric moisture for the La Plata river basin. J. Climate, 27, 67376753, https://doi.org/10.1175/JCLI-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merle, J., 1980: Variabilité thermique annuelle et interannuelle de l’océan Atlantique équatorial Est. L’hypothèse d’un “El Niño” Atlantique. Oceanol. Acta, 3, 209220.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., T. R. Holmes, R. A. de Jeu, J. Gash, A. G. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, https://doi.org/10.5194/hess-15-453-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, https://doi.org/10.1002/joc.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moura, A. D., and J. Shukla, 1981: On the dynamics of droughts in northeast Brazil: Observations, theory and numerical experiments with a general circulation model. J. Atmos. Sci., 38, 26532675, https://doi.org/10.1175/1520-0469(1981)038<2653:OTDODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running, 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 15601563, https://doi.org/10.1126/science.1082750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nepstad, D., and Coauthors, 2009: The end of deforestation in the Brazilian Amazon. Science, 326, 13501351, https://doi.org/10.1126/science.1182108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolini, M., A. C. Saulo, J. C. Torres, and P. Salio, 2002: Enhanced precipitation over southeastern South America related to strong low-level jet events characterization during austral warm season. Meteorologica, 27, 5970.

    • Search Google Scholar
    • Export Citation
  • Nobre, P., and J. Shukla, 1991: Interannual variability of SST and wind stress over the tropical Atlantic and rainfall over Amazon and Northeast Brasil. Fifth Conf. on Climate Variations. Denver, CO, Amer. Meteor. Soc., 472–475.

  • Nogués-Paegle, J., and K. C. Mo, 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125, 279291, https://doi.org/10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1947: Statistically homogeneous fields on a sphere. Uspethi Math. Nauk, 2, 196198.

  • Obukhov, A. M., 1960: The statistically orthogonal expansion of empirical functions. Bull. Acad. Sci. USSR. Geophys. Series (English Transl.), 1, 288–291.

  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Pielke, R. A., R. Avissar, M. Raupach, A. J. Dolman, X. Zeng, and A. S. Denning, 1998: Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biol., 4, 461475, https://doi.org/10.1046/j.1365-2486.1998.t01-1-00176.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 2007: An overview of regional land-use and land-cover impacts on rainfall. Tellus, 59B, 587601, https://doi.org/10.1111/j.1600-0889.2007.00251.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinzon, J. E., M. E. Brown, and C. J. Tucker, 2005: Satellite time series correction of orbital drift artifacts using empirical mode decomposition. Hilbert–Huang Transform: Introduction and Applications, N. Huang, Ed., World Scientific, 167–186.

    • Crossref
    • Export Citation
  • Preisendorfer, R. W., 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425 pp.

  • Rasmusson, E. M., and K. C. Mo, 1996: Large-scale atmospheric moisture cycling as evaluated from NMC global analysis and forecast products. J. Climate, 9, 32763297, https://doi.org/10.1175/1520-0442(1996)009<3276:LSAMCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2, 268284, https://doi.org/10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Running, S. W., and Coauthors, 1994: Terrestrial remote sensing science and algorithms planned for EOS/MODIS. Int. J. Remote Sens., 15, 35873620, https://doi.org/10.1080/01431169408954346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruscica, R. C., A. A. Sörensson, and C. G. Menéndez, 2015: Pathways between soil moisture and precipitation in southeastern South America. Atmos. Sci. Lett., 16, 267272, https://doi.org/10.1002/asl2.552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and C. Saulo, 2002: Chaco low-level jet events characterization during the austral summer season. J. Geophys. Res., 107, 4816, https://doi.org/10.1029/2001JD001315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, https://doi.org/10.1175/MWR3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saulo, C., L. Ferreira, J. Nogués-Paegle, M. Seluchi, and J. Ruiz, 2010: Land–atmosphere interactions during a northwestern Argentina low event. Mon. Wea. Rev., 138, 24812498, https://doi.org/10.1175/2010MWR3227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, W. Baethgen, A. Robertson, Y. Kushnir, J. Nakamura, and S. Jurburg, 2010: Tropical oceanic causes of interannual to multidecadal precipitation variability in southeast South America over the past century. J. Climate, 23, 55175539, https://doi.org/10.1175/2010JCLI3578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seluchi, M., A. C. Saulo, M. Nicolini, and P. Satyamurty, 2003: The northwestern Argentinean low: A study of two typical events. Mon. Wea. Rev., 131, 23612378, https://doi.org/10.1175/1520-0493(2003)131<2361:TNALAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., J. A. Renwick, and J. W. Kidson, 1997: Low-frequency variability of Southern Hemisphere sea level pressure and weather system activity. Mon. Wea. Rev., 125, 25312543, https://doi.org/10.1175/1520-0493(1997)125<2531:LFVOSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sörensson, A. A., and E. H. Berbery, 2015: A note on soil moisture memory and interactions with surface climate for different vegetation types in the La Plata basin. J. Hydrometeor., 16, 716729, https://doi.org/10.1175/JHM-D-14-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sörensson, A. A., and C. G. Menéndez, 2011: Summer soil–precipitation coupling in South America. Tellus, 63A, 5668, https://doi.org/10.1111/j.1600-0870.2010.00468.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spennemann, P. C., and A. C. Saulo, 2015: An estimation of the land–atmosphere coupling strength in South America using the Global Land Data Assimilation System. Int. J. Climatol., 35, 41514166, https://doi.org/10.1002/joc.4274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spennemann, P. C., M. Salvia, R. C. Ruscica, A. A. Sörensson, F. Grings, and H. Karszenbaum, 2018: Land–atmosphere interaction patterns in southeastern South America using satellite products and climate models. Int. J. Appl. Earth Obs. Geoinf., 64, 96103, https://doi.org/10.1016/j.jag.2017.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohlgren, T. J., T. N. Chase, R. A. Pielke Sr., T. G. Kittel, and J. S. Baron, 1998: Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas. Global Change Policy, 4, 495504, https://doi.org/10.1046/j.1365-2486.1998.t01-1-00182.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., J. E. Pinzon, M. E. Brown, D. A. Slayback, E. W. Pak, R. Mahoney, E. F. Vermote, and N. El Saleous, 2005: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 26, 44854498, https://doi.org/10.1080/01431160500168686.

    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, https://doi.org/10.1175/JCLI3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., Z. Liu, and M. Notaro, 2013: Extracting the dominant SST modes impacting North America’s observed climate. J. Climate, 26, 54345452, https://doi.org/10.1175/JCLI-D-12-00583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., M. Notaro, Z. Liu, and G. Chen, 2014: Observed local and remote influences of vegetation on the atmosphere across North America using a model-validated statistical technique that first excludes oceanic forcings. J. Climate, 27, 362382, https://doi.org/10.1175/JCLI-D-13-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., Y. Yu, M. Notaro, J. Mao, X. Shi, and Y. Wei, 2017: Advancing a model-validated statistical method for decomposing the key oceanic drivers of regional climate: Focus on northern and tropical African climate variability in the Community Earth System Model (CESM). J. Climate, 30, 85178537, https://doi.org/10.1175/JCLI-D-17-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, N., Z. Liu, Q. Liu, and C. Frankignoul, 2010: Observed atmospheric responses to global SST variability modes: A unified assessment using GEFA. J. Climate, 23, 17391759, https://doi.org/10.1175/2009JCLI3027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34, 25772586, https://doi.org/10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodward, F. I., 1987: Climate and Plant Distribution. Cambridge University Press, 174 pp.

  • Woodward, F. I., M. R. Lomas, and C. K. Kelly, 2004: Global climate and the distribution of plant biomes. Philos. Trans. Roy. Soc. London, 359B, 14651476, https://doi.org/10.1098/rstb.2004.1525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., M. Notaro, F. Wang, J. Mao, X. Shi, and Y. Wei, 2017a: Validation of a statistical methodology for extracting vegetation feedbacks: Focus on North African ecosystems in the Community Earth System Model. J. Climate, 31, 15651586, https://doi.org/10.1175/JCLI-D-17-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., M. Notaro, F. Wang, J. Mao, X. Shi, and Y. Wei, 2017b: Observed positive vegetation–rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism. Nat. Commun., 8, 1873, https://doi.org/10.1038/s41467-017-02021-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6, 15671586, https://doi.org/10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemp, D. C., C.-F. Schleussner, H. M. Barbosa, R. J. van der Ent, J. F. Donges, J. Heinke, G. Sampaio, and A. Rammig, 2014: On the importance of cascading moisture recycling in South America. Atmos. Chem. Phys., 14, 13 33713 359, https://doi.org/10.5194/acp-14-13337-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, N., K. Hales, and J. D. Neelin, 2002: Nonlinear dynamics in a coupled vegetation–atmosphere system and implications for desert–forest gradient. J. Climate, 15, 34743487, https://doi.org/10.1175/1520-0442(2002)015<3474:NDIACV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. Wallace, and D. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y. F., Z. Y. Liu, and M. Notaro, 2011: A GEFA assessment of observed global ocean influence on U.S. precipitation variability: Attribution to regional SST variability modes. J. Climate, 24, 693707, https://doi.org/10.1175/2010JCLI3663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. K. Kaufmann, Y. Tian, R. B. Myneni, and C. J. Tucker, 2003: Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. J. Geophys. Res., 108, 4004, https://doi.org/10.1029/2002JD002510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 101 14
PDF Downloads 120 120 17

Isolating the Observed Influence of Vegetation Variability on the Climate of La Plata River Basin

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
© Get Permissions
Restricted access

Abstract

This work aims to isolate and quantify the local and remote biogeophysical influences of slowly varying vegetation variability on the climate of La Plata basin (LPB) in the austral spring season (September–November) using observational records. Past studies have shown strong land–atmosphere coupling in LPB during this season. The analysis uses a 34-yr record (1981–2014) of the modified enhanced vegetation index (EVI2) from the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Vegetation Index and Phenology dataset and the third-generation normalized difference vegetation index (NDVI) from Global Inventory Modeling and Mapping Studies. The dominant patterns of vegetation index variability in space and time are assessed using empirical orthogonal function/principal component analysis over the LPB. The dominant mode in the austral spring is a vegetation dipole, with greening (browning) or positive (negative) vegetation index anomalies in the northeastern (southwestern) part of the basin. Using the stepwise generalized equilibrium feedback assessment (SGEFA), the effect of the vegetation variability on the atmosphere is then isolated. The dominant mode of LPB vegetation variability in austral spring is related to warmer temperatures in the southwest LPB and enhanced precipitation over the central and southern parts of the basin. A mechanism is proposed for the increase in latent heat flux and cooler temperatures in the northeastern LPB due to greening, and the increase in sensible heat flux, warmer temperatures, and decrease in surface pressure in southwestern LPB due to browning. The geostrophic response to this induced pressure gradient leads to anomalous northerly enhancement of moisture-laden winds, deeper penetration of moisture into LPB, and increased precipitation over the central and southern parts of the basin.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0677.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (ww.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Francina Dominguez, francina@illinois.edu

Abstract

This work aims to isolate and quantify the local and remote biogeophysical influences of slowly varying vegetation variability on the climate of La Plata basin (LPB) in the austral spring season (September–November) using observational records. Past studies have shown strong land–atmosphere coupling in LPB during this season. The analysis uses a 34-yr record (1981–2014) of the modified enhanced vegetation index (EVI2) from the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Vegetation Index and Phenology dataset and the third-generation normalized difference vegetation index (NDVI) from Global Inventory Modeling and Mapping Studies. The dominant patterns of vegetation index variability in space and time are assessed using empirical orthogonal function/principal component analysis over the LPB. The dominant mode in the austral spring is a vegetation dipole, with greening (browning) or positive (negative) vegetation index anomalies in the northeastern (southwestern) part of the basin. Using the stepwise generalized equilibrium feedback assessment (SGEFA), the effect of the vegetation variability on the atmosphere is then isolated. The dominant mode of LPB vegetation variability in austral spring is related to warmer temperatures in the southwest LPB and enhanced precipitation over the central and southern parts of the basin. A mechanism is proposed for the increase in latent heat flux and cooler temperatures in the northeastern LPB due to greening, and the increase in sensible heat flux, warmer temperatures, and decrease in surface pressure in southwestern LPB due to browning. The geostrophic response to this induced pressure gradient leads to anomalous northerly enhancement of moisture-laden winds, deeper penetration of moisture into LPB, and increased precipitation over the central and southern parts of the basin.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0677.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (ww.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Francina Dominguez, francina@illinois.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.18 MB)
Save