Using A-Train Observations to Evaluate Cloud Occurrence and Radiative Effects in the Community Atmosphere Model during the Southeast Asia Summer Monsoon

Elizabeth Berry University of Utah, Salt Lake City, Utah

Search for other papers by Elizabeth Berry in
Current site
Google Scholar
PubMed
Close
,
Gerald G. Mace University of Utah, Salt Lake City, Utah

Search for other papers by Gerald G. Mace in
Current site
Google Scholar
PubMed
Close
, and
Andrew Gettelman National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew Gettelman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The distribution of clouds and their radiative effects in the Community Atmosphere Model, version 5 (CAM5), are compared to A-Train satellite data in Southeast Asia during the summer monsoon. Cloud radiative kernels are created based on populations of observed and modeled clouds separately in order to compare the sensitivity of the TOA radiation to changes in cloud fraction. There is generally good agreement between the observation- and model-derived cloud radiative kernels for most cloud types, meaning that the clouds in the model are heating and cooling like clouds in nature. Cloud radiative effects are assessed by multiplying the cloud radiative kernel by the cloud fraction histogram. For ice clouds in particular, there is good agreement between the model and observations, with optically thin cirrus producing a moderate warming effect and cirrostratus producing a slight cooling effect, on average. Consistent with observations, the model also shows that the median value of the ice water path (IWP) distribution, rather than the mean, is a more representative measure of the ice clouds that are responsible for heating. In addition, in both observations and the model, it is cirrus clouds with an IWP of 20 g m−2 that have the largest warming effect in this region, given their radiative heating and frequency of occurrence.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elizabeth Berry, betsy.berry@utah.edu

Abstract

The distribution of clouds and their radiative effects in the Community Atmosphere Model, version 5 (CAM5), are compared to A-Train satellite data in Southeast Asia during the summer monsoon. Cloud radiative kernels are created based on populations of observed and modeled clouds separately in order to compare the sensitivity of the TOA radiation to changes in cloud fraction. There is generally good agreement between the observation- and model-derived cloud radiative kernels for most cloud types, meaning that the clouds in the model are heating and cooling like clouds in nature. Cloud radiative effects are assessed by multiplying the cloud radiative kernel by the cloud fraction histogram. For ice clouds in particular, there is good agreement between the model and observations, with optically thin cirrus producing a moderate warming effect and cirrostratus producing a slight cooling effect, on average. Consistent with observations, the model also shows that the median value of the ice water path (IWP) distribution, rather than the mean, is a more representative measure of the ice clouds that are responsible for heating. In addition, in both observations and the model, it is cirrus clouds with an IWP of 20 g m−2 that have the largest warming effect in this region, given their radiative heating and frequency of occurrence.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elizabeth Berry, betsy.berry@utah.edu
Save
  • Ackerman, T. P., K-N. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45, 16061623, https://doi.org/10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor, 2012: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys. Res. Lett., 39, L09712, https://doi.org/10.1029/2012gl051607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., M. O. Ajewole, and C. Simmer, 2007: Evaluation of radar multiple scattering effects in CloudSat configuration. Atmos. Chem. Phys., 7, 17191730, https://doi.org/10.5194/acp-7-1719-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E., and G. G. Mace, 2014: Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data. J. Geophys. Res Atmos., 119, 94929508, https://doi.org/10.1002/2014jd021458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, https://doi.org/10.1175/2011BAMS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571657.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., M. D. Zelinka, K. E. Taylor, and K. Marvel, 2016: Quantifying the sources of intermodel spread in equilibrium climate sensitivity. J. Climate, 29, 513524, https://doi.org/10.1175/JCLI-D-15-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., D. T. McCoy, and D. L. Hartmann, 2016: Observational evidence for a negative shortwave cloud feedback in middle to high latitudes. Geophys. Res. Lett., 43, 13311339, https://doi.org/10.1002/2015GL067499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., and D. E. Waliser, 2016: Characterizing and understanding systematic biases in the vertical structure of clouds in CMIP5/CFMIP2 models. Geophys. Res. Lett., 43, 10 53810 546, https://doi.org/10.1002/2016GL070515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chepfer, H., V. Noel, D. Winker, and M. Chiriaco, 2014: Where and when will we observe cloud changes due to climate warming? Geophys. Res. Lett., 41, 83878395, https://doi.org/10.1002/2014GL061792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., 2001: Parameterization of generalized cloud overlap for radiative calculations in general circulation models. J. Atmos. Sci., 58, 32243242, https://doi.org/10.1175/1520-0469(2001)058<3224:POGCOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, S. K., R. B. Golhait, and K. N. Uma, 2017: Cloud vertical properties over the Northern Hemisphere monsoon regions from CloudSat–CALIPSO measurements. Atmos. Res., 183, 7383, https://doi.org/10.1016/j.atmosres.2016.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat–CALIPSO–MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, https://doi.org/10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, R. P. Lawson, 2013: Evaluation of several A-Train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52, 10141030, https://doi.org/10.1175/JAMC-D-12-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and E. Berry, 2015: CloudSat 2C-ICE product update with a new Ze parameterization in lidar-only region. J. Geophys. Res. Atmos., 120, 12 19812 208, https://doi.org/10.1002/2015jd023600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolinar, E. K., X. Dong, B. Xi, J. H. Jiang, and H. Su, 2015: Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Climate Dyn., 44, 22292247, https://doi.org/10.1007/s00382-014-2158-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 51355144, https://doi.org/10.1175/2008JCLI2239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 20582082, https://doi.org/10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., P. Yang, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11, 22232237, https://doi.org/10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and S. C. Sherwood, 2016: Processes responsible for cloud feedback. Curr. Climate Change Rep., 2, 179189, https://doi.org/10.1007/s40641-016-0052-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, https://doi.org/10.1029/2009JD013797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, https://doi.org/10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., T. L’Ecuyer, G. Stephens, P. Partain, and M. Sekiguchi, 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853871, https://doi.org/10.1175/JAMC-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., and G. Liu, 2015: The characteristics of ice cloud properties derived from CloudSat and CALIPSO measurements. J. Climate, 28, 38803901, https://doi.org/10.1175/JCLI-D-14-00666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., and G. Liu, 2016: Assessing the radiative effects of global ice clouds based on CloudSat and CALIPSO measurements. J. Climate, 29, 76517674, https://doi.org/10.1175/JCLI-D-15-0799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and S. A. Klein, 1999: The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF model. Quart. J. Roy. Meteor. Soc., 125, 941965, https://doi.org/10.1002/qj.49712555510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and Coauthors, 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res., 117, D14105, https://doi.org/10.1029/2011JD017237.

    • Search Google Scholar
    • Export Citation
  • Kato, S., G. L. Smith, and H. W. Barker, 2001: Gamma-weighted discrete ordinate two-stream approximation for computation of domain-averaged solar irradiance. J. Atmos. Sci., 58, 37973803, https://doi.org/10.1175/1520-0469(2001)058<3797:GWDOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, https://doi.org/10.1175/JCLI-D-12-00436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J., J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 11311149, https://doi.org/10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., Y. Zhang, M. D. Zelinka, R. Pincus, J. Boyle, and P. J. Gleckler, 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J. Geophys. Res. Atmos., 118, 13291342, https://doi.org/10.1002/jgrd.50141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauer, A., and K. Hamilton, 2013: Simulating clouds with global climate models: A comparison of CMIP5 results with CMIP3 and satellite data. J. Climate, 26, 38233845, https://doi.org/10.1175/JCLI-D-12-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T., and J. Jiang, 2010: Touring the atmosphere aboard the A-Train. Phys. Today, 63, 3641, https://doi.org/10.1063/1.3463626.

  • Li, J.-L. F., and Coauthors, 2012: An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res., 117, D16105, https://doi.org/10.1029/2012jd017640.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., W.-L. Lee, D. E. Waliser, J. P. Stachnik, E. Fetzer, S. Wong, and Q. Yue, 2014: Characterizing tropical Pacific water vapor and radiative biases in CMIP5 GCMs: Observation-based analyses and a snow and radiation interaction sensitivity experiment. J. Geophys. Res. Atmos., 119, 10 98110 995, https://doi.org/10.1002/2014JD021924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., 2010: Cloud properties and radiative forcing over the maritime storm tracks of the North Atlantic and Southern Ocean as derived from A-Train. J. Geophys. Res., 115, D10201, https://doi.org/10.1029/2009JD012517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and F. J. Wrenn, 2013: Evaluation of hydrometeor layers in the east and west Pacific within ISCCP cloud-top pressure–optical depth bins using merged CloudSat and CALIPSO data. J. Climate, 26, 94299444, https://doi.org/10.1175/JCLI-D-12-00207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, https://doi.org/10.1002/2013JD021374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and E. Berry, 2017: Using active remote sensing to evaluate cloud-climate feedbacks: A review and a look to the future. Curr. Climate Change Rep., 3, 185192, https://doi.org/10.1007/s40641-017-0067-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., R. Marchand, Q. Zhang, and G. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34, L09808, https://doi.org/10.1029/2006GL029017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughn, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res., 114, D00A26, https://doi.org/10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Marvel, K., M. Zelinka, S. A. Klein, C. Bonfils, P. Caldwell, C. Doutriaux, B. D. Sandter, and K. E. Taylor, 2015: External influence on modeled and observed cloud trends. J. Climate, 28, 48204900, https://doi.org/10.1175/JCLI-D-14-00734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. Battaglia, and P. Rodriguez, 2008: Effects of multiple scattering on attenuation-based retrievals of stratiform rain from CloudSat. J. Atmos. Oceanic Technol., 25, 21992208, https://doi.org/10.1175/2008JTECHA1095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nam, C., S. Bony, J.-L. Dufresne, and H. Chepfer, 2012: The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett., 39, L21801, https://doi.org/10.1029/2012gl053421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp., www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

  • Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell, and S. A. Klein, 2016: Evidence for climate change in the satellite cloud record. Nature, 536, 7275, https://doi.org/10.1038/nature18273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Partain, P., 2007: CloudSat ECMWF-AUX auxiliary data process description and interface control document. Cooperative Institute for Research in the Atmosphere, Colorado State University, 11 pp.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, https://doi.org/10.1038/nature12829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1989: A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46, 14191427, https://doi.org/10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, https://doi.org/10.1175/JCLI3799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and G. A. Vecchi, 2011: The vertical distribution of cloud feedback in coupled ocean–atmosphere models. Geophys. Res. Lett., 38, L12704, https://doi.org/10.1029/2011GL047632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., A. M. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17, 36613665, https://doi.org/10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, https://doi.org/10.1175/2007JCLI2110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedback in the climate system: A critical review. J. Climate, 18, 237273, https://doi.org/10.1175/JCLI-3243.1.

  • Stephens, G. L., D. Winker, J. Pelon, C. Trepte, D. Vane, C. Yuhas, T. L’Ecuyer, and M. Lebsock, 2018: CloudSat and CALIPSO within the A-Train: Ten years of actively observing the Earth system. Bull. Amer. Meteor. Soc., 99, 569581, https://doi.org/10.1175/bams-d-16-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and S. Bony, 2013: What are climate models missing? Science, 340, 10531054, https://doi.org/10.1126/science.1237554.

  • Su, H., and Coauthors, 2013: Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using “A-Train” satellite observations and reanalysis data. J. Geophys. Res. Atmos., 118, 27622780, https://doi.org/10.1029/2012JD018575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, https://doi.org/10.1109/TGRS.2008.2002030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam, 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94, 16 28716 301, https://doi.org/10.1029/JD094iD13p16287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., M. A. Ringer, M. J. Webb, and K. D. Williams, 2013: Quantitative evaluation of the seasonal variations in climate model cloud regimes. Climate Dyn., 41, 26792696, https://doi.org/10.1007/s00382-012-1609-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, https://doi.org/10.1007/s00382-013-1725-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, https://doi.org/10.1029/2008JD010015.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., J.-L. F. Li, T. S. L’Ecuyer, and W.-T. Chen, 2011: The impact of precipitating ice and snow on the radiation balance in global climate models. Geophys. Res. Lett., 38, L06802, https://doi.org/10.1029/2010GL046478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and W. Su, 2013: Evaluating and understanding top of the atmosphere cloud radiative effects in Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) models using satellite observations. J. Geophys. Res Atmos., 118, 683699, https://doi.org/10.1029/2012JD018619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D., and Coauthors, 2010: The CALIPSO mission. Bull. Amer. Meteor. Soc. 91, 12111229, https://doi.org/10.1175/2010BAMS3009.1.

  • Yue, Q., B. H. Kahn, E. J. Fetzer, M. Schreier, and S. Wong, 2016: Observation-based longwave cloud radiative kernels derived from the A-Train. J. Climate, 29, 20232040, https://doi.org/10.1175/JCLI-D-15-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, https://doi.org/10.1029/2010JD013817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 37153735, https://doi.org/10.1175/JCLI-D-11-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26, 50075027, https://doi.org/10.1175/JCLI-D-12-00555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, A. E. Dessler, and P. Yang, 2013: An analysis of the short-term cloud feedback using MODIS data. J. Climate, 26, 48034815, https://doi.org/10.1175/JCLI-D-12-00547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., A. E. Dessler, M. D. Zelinka, P. Yang, and T. Wang, 2014: Cirrus feedback on interannual climate fluctuations. Geophys. Res. Lett., 41, 91669173, https://doi.org/10.1002/2014GL062095.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 390 138 0
PDF Downloads 358 94 1