Hydroclimate Responses over Global Monsoon Regions Following Volcanic Eruptions at Different Latitudes

Meng Zuo State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Meng Zuo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6078-9814
,
Tianjun Zhou State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Tianjun Zhou in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5829-7279
, and
Wenmin Man State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Wenmin Man in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding the influence of volcanic eruptions on the hydroclimate over global monsoon regions is of great scientific and social importance. However, the link between the latitude of volcanic eruptions and related hydroclimate changes over global monsoon regions in the last millennium remains inconclusive. Here we show divergent hydroclimate responses after different volcanic eruptions based on large sets of reconstructions, observations, and climate model simulation. Both the proxy and observations show that Northern Hemispheric (Southern Hemispheric) monsoon precipitation is weakened by northern (southern) and tropical eruptions but is enhanced by the southern (northern) eruptions. A similar relationship is found in coupled model simulations driven by volcanic forcing. The model evidence indicates that the dynamic processes related to changes in atmospheric circulation play a dominant role in precipitation responses. The dry conditions over the Northern Hemisphere (Southern Hemisphere) and global monsoon regions following northern (southern) and tropical eruptions are induced through weakened monsoon circulation. The wet conditions over Northern Hemispheric (Southern Hemispheric) monsoon regions after southern (northern) eruptions are caused by the enhanced cross-equator flow. We extend our model simulation analysis from mean state precipitation to extreme precipitation and find that the response of the extreme precipitation is consistent with that of the mean precipitation but is more sensitive over monsoon regions. The response of surface runoff and net primary production is stronger than that of precipitation over some submonsoon regions. Our results imply that it is imperative to consider the potential volcanic eruptions at different hemispheres in the design of near-term decadal climate prediction experiments.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0707.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Additional affiliation: CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China.

Corresponding author: Tianjun Zhou, zhoutj@lasg.iap.ac.cn

Abstract

Understanding the influence of volcanic eruptions on the hydroclimate over global monsoon regions is of great scientific and social importance. However, the link between the latitude of volcanic eruptions and related hydroclimate changes over global monsoon regions in the last millennium remains inconclusive. Here we show divergent hydroclimate responses after different volcanic eruptions based on large sets of reconstructions, observations, and climate model simulation. Both the proxy and observations show that Northern Hemispheric (Southern Hemispheric) monsoon precipitation is weakened by northern (southern) and tropical eruptions but is enhanced by the southern (northern) eruptions. A similar relationship is found in coupled model simulations driven by volcanic forcing. The model evidence indicates that the dynamic processes related to changes in atmospheric circulation play a dominant role in precipitation responses. The dry conditions over the Northern Hemisphere (Southern Hemisphere) and global monsoon regions following northern (southern) and tropical eruptions are induced through weakened monsoon circulation. The wet conditions over Northern Hemispheric (Southern Hemispheric) monsoon regions after southern (northern) eruptions are caused by the enhanced cross-equator flow. We extend our model simulation analysis from mean state precipitation to extreme precipitation and find that the response of the extreme precipitation is consistent with that of the mean precipitation but is more sensitive over monsoon regions. The response of surface runoff and net primary production is stronger than that of precipitation over some submonsoon regions. Our results imply that it is imperative to consider the potential volcanic eruptions at different hemispheres in the design of near-term decadal climate prediction experiments.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0707.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Additional affiliation: CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China.

Corresponding author: Tianjun Zhou, zhoutj@lasg.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 3.23 MB)
Save
  • Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño–like response to volcanic forcing. Nature, 426, 274278, https://doi.org/10.1038/nature02101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anchukaitis, K. J., B. M. Buckley, E. R. Cook, B. I. Cook, R. D. D’Arrigo, and C. M. Ammann, 2010: Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys. Res. Lett., 37, L22703, https://doi.org/10.1029/2010GL044843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: A simple model of climatological rainfall and vertical motion patterns over the tropical oceans. J. Climate, 22, 64776497, https://doi.org/10.1175/2009JCLI2393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and Coauthors, 2016: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev., 9, 37513777, https://doi.org/10.5194/gmd-9-3751-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, https://doi.org/10.1175/2008JCLI2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colose, C. M., A. N. LeGrande, and M. Vuille, 2016: The influence of volcanic eruptions on the climate of tropical South America during the last millennium in an isotope-enabled general circulation model. Climate Past, 12, 961979, https://doi.org/10.5194/cp-12-961-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., K. J. Anchukaitis, B. M. Buckley, R. D. D’Arrigo, G. C. Jacoby, and W. E. Wright, 2010: Asian monsoon failure and megadrought during the last millennium. Science, 328, 486489, https://doi.org/10.1126/science.1185188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Arrigo, R., R. Wilson, and A. Tudhope, 2009: The impact of volcanic forcing on tropical temperatures during the past four centuries. Nat. Geosci., 2, 5156, https://doi.org/10.1038/ngeo393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dogar, M. M., G. Stenchikov, S. Osipov, B. Wyman, and M. Zhao, 2017: Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations. J. Geophys. Res. Atmos., 122, 79227948, https://doi.org/10.1002/2017JD026783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., Q. Hu, Q. Wu, and M. E. Mann, 2013: A gridded reconstruction of warm season precipitation for Asia spanning the past half millennium. J. Climate, 26, 21922204, https://doi.org/10.1175/JCLI-D-12-00099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., J. Luterbacher, E. Zorita, S. F. B. Tett, C. Casty, and H. Wanner, 2007: European climate response to tropical volcanic eruptions over the last half millennium. Geophys. Res. Lett., 34, L05707, https://doi.org/10.1029/2006GL027992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C., A. Robock, and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grinsted, A., J. C. Moore, and S. Jevrejeva, 2007: Observational evidence for volcanic impact on sea level and the global water cycle. Proc. Natl. Acad. Sci. USA, 104, 19 73019 734, https://doi.org/10.1073/pnas.0705825104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haurwitz, M. W., and G. W. Brier, 1981: A critique of the superposed epoch analysis method: Its application to solar–weather relations. Mon. Wea. Rev., 109, 20742079, https://doi.org/10.1175/1520-0493(1981)109<2074:ACOTSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., A. Jones, N. Bellouin, and D. Stephenson, 2013: Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Climate Change, 3, 660665, https://doi.org/10.1038/nclimate1857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iles, C. E., and G. C. Hegerl, 2014: The global precipitation response to volcanic eruptions in the CMIP5 models. Environ. Res. Lett., 9, 104012, https://doi.org/10.1088/1748-9326/9/10/104012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iles, C. E., and G. C. Hegerl, 2015: Systematic change in global patterns of streamflow following volcanic eruptions. Nat. Geosci., 8, 838842, https://doi.org/10.1038/ngeo2545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iles, C. E., G. C. Hegerl, A. P. Schurer, and X. Zhang, 2013: The effect of volcanic eruptions on global precipitation. J. Geophys. Res. Atmos., 118, 87708786, https://doi.org/10.1002/jgrd.50678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khodri, M., and Coauthors, 2017: Tropical explosive volcanic eruptions can trigger El Nino by cooling tropical Africa. Nat. Commun., 8, 778, https://doi.org/10.1038/s41467-017-00755-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., J. Shi, D. D. Zhang, B. Yang, K. Fang, and P. H. Yue, 2017: Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau. Climate Dyn., 48, 649660, https://doi.org/10.1007/s00382-016-3101-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., J. Chai, B. Wang, J. Liu, X. Zhang, and Z. Wang, 2016: Global monsoon precipitation responses to large volcanic eruptions. Sci. Rep., 6, 24331, https://doi.org/10.1038/srep24331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., J. Li, B. Wang, J. Liu, T. Li, G. Huang, and Z. Wang, 2018a: Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium. Climate Dyn., 50, 37993812, https://doi.org/10.1007/s00382-017-3846-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., C. Xing, L. Sun, B. Wang, D. Chen, and J. Liu, 2018b: How do tropical, Northern Hemispheric, and Southern Hemispheric volcanic eruptions affect ENSO under different initial ocean conditions? Geophys. Res. Lett., 45, 13 04113 049, https://doi.org/10.1029/2018GL080315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lough, J. M., 2007: Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia. Paleoceanography, 22, PA2218, https://doi.org/10.1029/2006PA001377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Man, W., T. Zhou, and J. H. Jungclaus, 2014: Effects of large volcanic eruptions on global summer climate and East Asian monsoon changes during the last millennium: Analysis of MPI-ESM simulations. J. Climate, 27, 73947409, https://doi.org/10.1175/JCLI-D-13-00739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., M. A. Cane, S. E. Zebiak, and A. Clement, 2005: Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J. Climate, 18, 447456, https://doi.org/10.1175/JCLI-3276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, and O. Timm, 2010: A unified proxy for ENSO and PDO variability since 1650. Climate Past, 6, 117, https://doi.org/10.5194/cp-6-1-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections, and global warming. The Global Circulation of the Atmosphere, T. Schneider and A. Sobel, Eds., Princeton University Press, 267301.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neukom, R., and Coauthors, 2010: Multi-centennial summer and winter precipitation variability in southern South America. Geophys. Res. Lett., 37, L14708, https://doi.org/10.1029/2010GL043680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neukom, R., and Coauthors, 2014: Multi-proxy summer and winter precipitation reconstruction for southern Africa over the last 200 years. Climate Dyn., 42, 27132726, https://doi.org/10.1007/s00382-013-1886-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oman, L., A. Robock, G. L. Stenchikov, and T. Thordarson, 2006: High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophys. Res. Lett., 33, L18711, https://doi.org/10.1029/2006GL027665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and Coauthors, 2016: Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bull. Amer. Meteor. Soc., 97, 735754, https://doi.org/10.1175/BAMS-D-14-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paik, S., and S.-K. Min, 2017: Climate responses to volcanic eruptions assessed from observations and CMIP5 multi-models. Climate Dyn., 48, 10171030, https://doi.org/10.1007/s00382-016-3125-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paik, S., and S.-K. Min, 2018: Assessing the impact of volcanic eruptions on climate extremes using CMIP5 models. J. Climate, 31, 53335349, https://doi.org/10.1175/JCLI-D-17-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S., L. Chafik, R. Caballero, and D. S. Battisti, 2015: Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc. Natl. Acad. Sci. USA, 112, 13 78413 788, https://doi.org/10.1073/pnas.1509153112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, Y., C. Shen, W.-C. Wang, and Y. Xu, 2010: Response of summer precipitation over eastern China to large volcanic eruptions. J. Climate, 23, 818824, https://doi.org/10.1175/2009JCLI2950.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prado, L. F., I. Wainer, and P. L. da Silva Dias, 2018: Tropical Atlantic response to last millennium volcanic forcing. Atmosphere, 9, 421, https://doi.org/10.3390/atmos9110421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219, https://doi.org/10.1029/1998RG000054.

  • Robock, A., 2007: Correction to “Volcanic eruptions and climate.” Rev. Geophys., 45, RG3005, https://doi.org/10.1029/2007RG000232.

  • Schneider, D. P., C. M. Ammann, B. L. Otto-Bliesner, and D. S. Kaufman, 2009: Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J. Geophys. Res., 114, D15101, https://doi.org/10.1029/2008JD011222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, C., W.-C. Wang, Z. Hao, and W. Gong, 2007: Exceptional drought events over eastern China during the last five centuries. Climatic Change, 85, 453471, https://doi.org/10.1007/s10584-007-9283-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, C., W.-C. Wang, Z. Hao, and W. Gong, 2008: Characteristics of anomalous precipitation events over eastern China during the past five centuries. Climate Dyn., 31, 463476, https://doi.org/10.1007/s00382-007-0323-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, F., S. Zhao, Z. Guo, H. Goosse, and Q. Yin, 2017: Multi-proxy reconstructions of May–September precipitation field in China over the past 500 years. Climate Past, 13, 19191938, https://doi.org/10.5194/cp-13-1919-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stahle, D. W., and Coauthors, 2016: The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quat. Sci. Rev., 149, 3460, https://doi.org/10.1016/j.quascirev.2016.06.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S., B. Otto-Bliesner, J. Fasullo, and E. Brady, 2016: “El Niño like” hydroclimate responses to last millennium volcanic eruptions. J. Climate, 29, 29072921, https://doi.org/10.1175/JCLI-D-15-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S., J. T. Fasullo, B. L. Otto-Bliesner, R. A. Tomas, and C. Gao, 2017: Role of eruption season in reconciling model and proxy responses to tropical volcanism. Proc. Natl. Acad. Sci. USA, 114, 18221826, https://doi.org/10.1073/pnas.1612505114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmreck, C., 2012: Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdiscip. Rev.: Climate Change, 3, 545564, https://doi.org/10.1002/wcc.192.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Dai, 2007: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett., 34, L15702, https://doi.org/10.1029/2007GL030524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H.-J. Kim, P. J. Webster, and S.-Y. Yim, 2012: Recent change of the global monsoon precipitation (1979–2008). Climate Dyn., 39, 11231135, https://doi.org/10.1007/s00382-011-1266-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegmann, M., S. Brönnimann, J. Bhend, J. Franke, D. Folini, M. Wild, and J. Luterbacher, 2014: Volcanic influence on European summer precipitation through monsoons: Possible cause for “years without summer.” J. Climate, 27, 36833691, https://doi.org/10.1175/JCLI-D-13-00524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2017: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 96219635, https://doi.org/10.1175/JCLI-D-16-0489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., Z. Zhang, and H. Wang, 2018: Divergent responses of tropical cyclone genesis factors to strong volcanic eruptions at different latitudes. Climate Dyn., 50, 21212136, https://doi.org/10.1007/s00382-017-3739-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, L., H. Yu, X. Xu, J. Yao, Q. Su, and J. Ge, 2010: Exploratory precipitation in north-central China during the past four centuries. Acta Geol. Sin., 84, 223229, https://doi.org/10.1111/j.1755-6724.2010.00184.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., C. Timmreck, H.-F. Graf, A. Rubino, S. Lorenz, K. Lohmann, K. Krüger, and J. H. Jungclaus, 2012: Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39, 419444, https://doi.org/10.1007/s00382-011-1167-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., and Coauthors, 2016: The Model Intercomparison Project on the Climatic Response to Volcanic Forcing (VolMIP): Experimental design and forcing input data for CMIP6. Geosci. Model Dev., 9, 27012719, https://doi.org/10.5194/gmd-9-2701-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuo, Z., C. Gao, and Y. Pan, 2014: Proxy evidence for China’s monsoon precipitation response to volcanic aerosols over the past seven centuries. J. Geophys. Res. Atmos., 119, 66386652, https://doi.org/10.1002/2013JD021061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, M., W. Man, T. Zhou, and Z. Guo, 2018: Different impacts of northern, tropical, and southern volcanic eruptions on the tropical Pacific SST in the last millennium. J. Climate, 31, 67296744, https://doi.org/10.1175/JCLI-D-17-0571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1318 469 141
PDF Downloads 1277 278 31