The Variation of the Intensity, Height, and Size of Precipitation Systems with El Niño–Southern Oscillation in the Tropics and Subtropics

Nana Liu Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, Texas

Search for other papers by Nana Liu in
Current site
Google Scholar
PubMed
Close
,
Chuntao Liu Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, Texas

Search for other papers by Chuntao Liu in
Current site
Google Scholar
PubMed
Close
, and
Thomas Lavigne Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, Texas

Search for other papers by Thomas Lavigne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A 16-yr (1998–2013) Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) database is used to examine the impacts of El Niño–Southern Oscillation (ENSO) on the characteristics of precipitation systems in the tropics and subtropics. Noticeable differences in the fractions of deep systems (20-dBZ radar echo tops greater than 10 km) and mesoscale convective systems (MCSs) (an area greater than 2000 km2) between different phases of ENSO are found over specific regions, including the central Pacific (CPACI), the western Maritime Continent (WMC), the eastern Maritime Continent (EMC), Gulf of Mexico (GM), Argentina (ARGEN), and Australia (AUS). The coefficients of determination R2 between the multivariate ENSO index (MEI) and the population fractions of deep convection and MCSs are analyzed seasonally over these regions. The responses from these precipitation systems to ENSO are found to be more pronounced in the winter half-year than in the summer half-year. An increase of rainfall during El Niño periods over the CPACI, GM, and ARGEN is found to be associated with more precipitation events and a higher fraction of intense, deep, and large precipitation systems. AUS has fewer precipitation events and a higher fraction of shallow and small precipitation systems during El Niño conditions. Both EMC and WMC have a higher fraction of MCSs during La Niña than El Niño conditions. The EMC observes a higher fraction of deep convection during La Niña conditions. However, the WMC has a higher fraction of deep convection during El Niño conditions, possibly related to the effect of the Indian Ocean dipole.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nana Liu, nliu@islander.tamucc.edu

Abstract

A 16-yr (1998–2013) Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) database is used to examine the impacts of El Niño–Southern Oscillation (ENSO) on the characteristics of precipitation systems in the tropics and subtropics. Noticeable differences in the fractions of deep systems (20-dBZ radar echo tops greater than 10 km) and mesoscale convective systems (MCSs) (an area greater than 2000 km2) between different phases of ENSO are found over specific regions, including the central Pacific (CPACI), the western Maritime Continent (WMC), the eastern Maritime Continent (EMC), Gulf of Mexico (GM), Argentina (ARGEN), and Australia (AUS). The coefficients of determination R2 between the multivariate ENSO index (MEI) and the population fractions of deep convection and MCSs are analyzed seasonally over these regions. The responses from these precipitation systems to ENSO are found to be more pronounced in the winter half-year than in the summer half-year. An increase of rainfall during El Niño periods over the CPACI, GM, and ARGEN is found to be associated with more precipitation events and a higher fraction of intense, deep, and large precipitation systems. AUS has fewer precipitation events and a higher fraction of shallow and small precipitation systems during El Niño conditions. Both EMC and WMC have a higher fraction of MCSs during La Niña than El Niño conditions. The EMC observes a higher fraction of deep convection during La Niña conditions. However, the WMC has a higher fraction of deep convection during El Niño conditions, possibly related to the effect of the Indian Ocean dipole.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nana Liu, nliu@islander.tamucc.edu
Save
  • Andrews, E. D., R. C. Antweiler, P. J. Neiman, and F. M. Ralph, 2004: Influence of ENSO on flood frequency along the California coast. J. Climate, 17, 337348, https://doi.org/10.1175/1520-0442(2004)017<0337:IOEOFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., 1982: The relationship between interannual variability in the 200 mb tropical wind field and the Southern Oscillation. Mon. Wea. Rev., 110, 13931404, https://doi.org/10.1175/1520-0493(1982)110<1393:TRBIVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, https://doi.org/10.1029/2003GL017926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12, 28812893, https://doi.org/10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and E. J. Zipser, 1999: Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127, 103123, https://doi.org/10.1175/1520-0493(1999)127<0103:RBTCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and T. M. L. Wigley, 2000: Global patterns of ENSO induced precipitation. Geophys. Res. Lett., 27, 12831286, https://doi.org/10.1029/1999GL011140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., 1998: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Implications for long-range predictability. J. Climate, 11, 31923203, https://doi.org/10.1175/1520-0442(1998)011<3192:EIOIER>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamid, E. Y., Z.-I. Kawasaki, and R. Mardiana, 2001: Impact of the 1997–98 El Niño event on lightning activity over Indonesia. Geophys. Res. Lett., 28, 147150, https://doi.org/10.1029/2000GL011374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. J., A. S. Taschetto, and M. H. England, 2011: Sensitivity of South American summer rainfall to tropical Pacific Ocean SST anomalies. Geophys. Res. Lett., 38, L01701, https://doi.org/10.1029/2010GL045571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, https://doi.org/10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, J. Kwiatkowski, R. Meneghini, J. Awaka, and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 130, https://doi.org/10.2151/jmsj.87A.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, and R. Seager, 2016: El Niño impact on California precipitation: Seasonality, regionality, and El Niño intensity. Environ. Res. Lett., 11, 054021, https://doi.org/10.1088/1748-9326/11/5/054021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Julian, P. R., and R. M. Chervin, 1978: A study of the Southern Oscillation and Walker Circulation phenomenon. Mon. Wea. Rev., 106, 14331451, https://doi.org/10.1175/1520-0493(1978)106<1433:ASOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiem, A. S., and S. W. Franks, 2001: On the identification of ENSO-induced rainfall and runoff variability: A comparison of methods and indices. Hydrol. Sci. J., 46, 715727, https://doi.org/10.1080/02626660109492866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiem, A. S., and S. W. Franks, 2004: Multidecadal variability of drought risk, eastern Australia. Hydrol. Processes, 18, 20392050, https://doi.org/10.1002/hyp.1460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and H. F. Diaz, 1989: Global climate anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090, https://doi.org/10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. G. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405, https://doi.org/10.1002/qj.49712353807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leigh, R., and I. Kuhnel, 2001: Hailstorm loss modelling and risk assessment in the Sydney Region, Australia. Nat. Hazards, 24, 171185, https://doi.org/10.1023/A:1011855801345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, https://doi.org/10.1029/2005JD006063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2015: The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett., 42, 35913595. https://doi.org/10.1002/2015GL063776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: different perspectives from TRMM infrared and radar data. J. Climate, 20, 489503, https://doi.org/10.1175/JCLI4023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, https://doi.org/10.1175/2008JAMC1890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, N., and C. Liu, 2016: Global distribution of deep convection reaching tropopause in 1 year GPM observations. J. Geophys. Res. Atmos., 121, 38243842, https://doi.org/10.1002/2015JD024430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, N., and C. Liu, 2018: Synoptic environments and characteristics of convection reaching the tropopause over northeast China. Mon. Wea. Rev., 146, 745759, https://doi.org/10.1175/MWR-D-17-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., and A. G. Barnston, 2005: ENSO and the spatial extent of interannual precipitation extremes in tropical land areas. J. Climate, 18, 50955109, https://doi.org/10.1175/JCLI3598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981416, https://doi.org/10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and N. Nicholls, 1983: Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Wea. Rev., 111, 19982004, https://doi.org/10.1175/1520-0493(1983)111<1998:SRBARA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., P. McIntosh, L. Pigot, and M. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880, https://doi.org/10.1175/JCLI4152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437, https://doi.org/10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor., 38, 596606, https://doi.org/10.1175/1520-0450(1999)038<0596:TCTTRW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., J. Molinari, and C. D. Thorncroft, 2009: The interannual stability of cumulative frequency distributions for convective system size and intensity. J. Climate, 22, 52185231, https://doi.org/10.1175/2009JCLI2940.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, https://doi.org/10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, https://doi.org/10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, https://doi.org/10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, https://doi.org/10.1175/MWR3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S. B., F. Tseitkin, S. Torok, B. Lavery, R. Dahni, and B. McAvaney, 1998: Australian temperature, Australian rainfall and the Southern Oscillation, 1910–1992: Coherent variability and recent changes. Aust. Meteor. Mag., 47, 85101.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1983: The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon. Wea. Rev., 111, 517528, https://doi.org/10.1175/1520-0493(1983)111<0517:TRBEEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, https://doi.org/10.1175/2009MWR2861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze, 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, https://doi.org/10.1175/2010JCLI3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., S. Medina, and R. A. Houze, 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, https://doi.org/10.1175/2009JCLI3140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño– Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, H. N., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, https://doi.org/10.1175/MWR3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, A., and R. Kostaschuk, 2005: El Niño/Southern Oscillation (ENSO)-related variablity in mean-monthly streamflow in Nepal. J. Hydrol., 308, 3349, https://doi.org/10.1016/j.jhydrol.2004.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, https://doi.org/10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, G. T., 1925: Correlation in seasonal variations of weather—A further study of world weather. Mon. Wea. Rev., 53, 252254, https://doi.org/10.1175/1520-0493(1925)53<252:CISVOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361, https://doi.org/10.1007/BF01026810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. Moore, J. Loschnigg, and M. Leban, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 2005: Lightning and climate: A review. Atmos. Res., 76, 272287, https://doi.org/10.1016/j.atmosres.2004.11.014.

  • Wolter, K., and M. S. Timlin, 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 10741087, https://doi.org/10.1002/joc.2336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–Western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., and T. DelSole, 2012: Systematic comparison of ENSO teleconnection patterns between models and observations. J. Climate, 25, 425446, https://doi.org/10.1175/JCLI-D-11-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeo, C. S., 2005: Severe thunderstorms in the Brisbane region and a relationship to the El Niño Southern Oscillation. Aust. Meteor. Mag., 54, 197202.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze, 2010: Global variability of mesoscale convective system anvil structure from A-train satellite data. J. Climate, 23, 58645888, https://doi.org/10.1175/2010JCLI3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolman, J. L., E. J. Zipser, and K. I. Mohr, 2000: A comparison of tropical mesoscale convective systems in El Niño and La Niña. J. Climate, 13, 33143326, https://doi.org/10.1175/1520-0442(2000)013<3314:ACOTMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 455 188 13
PDF Downloads 440 155 11