• Allen, J. T., 2018: Climate change and severe thunderstorms. Oxford Research Encyclopedia of Climate Science, Oxford University Press, https://doi.org/10.1093/acrefore/9780190228620.013.62.

    • Crossref
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nat. Geosci., 8, 278283, https://doi.org/10.1038/ngeo2385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. J. Molina, and V. A. Gensini, 2018: Modulation of annual cycle of tornadoes by El Niño–Southern Oscillation. Geophys. Res. Lett., 45, 57085717, https://doi.org/10.1029/2018GL077482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., and K. Mitchell, 2001: Evaluation of the NCEP mesoscale Eta model convective boundary layer for air quality applications. Mon. Wea. Rev., 129, 27612775, https://doi.org/10.1175/1520-0493(2001)129<2761:EOTNME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldini, L. M., F. McDermott, J. U. Baldini, M. J. Fischer, and M. Möllhoff, 2010: An investigation of the controls on Irish precipitation δ18O values on monthly and event timescales. Climate Dyn., 35, 977993, https://doi.org/10.1007/s00382-010-0774-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351366, https://doi.org/10.1175/WAF858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blender, R., K. Fraedrich, and F. Lunkeit, 1997: Identification of cyclone-track regimes in the North Atlantic. Quart. J. Roy. Meteor. Soc., 123, 727741, https://doi.org/10.1002/qj.49712353910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohlinger, P., A. Sorteberg, and H. Sodemann, 2017: Synoptic conditions and moisture sources actuating extreme precipitation in Nepal. J. Geophys. Res. Atmos., 122, 12 65312 671, https://doi.org/10.1002/2017JD027543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohlinger, P., A. Sorteberg, C. Liu, R. Rasmussen, H. Sodemann, and F. Ogawa, 2018: Multiscale characteristics of an extreme precipitation event over Nepal. Quart. J. Roy. Meteor. Soc., 145, 179196, https://doi.org/10.1002/qj.3418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., A. R. Anderson, K. Riemann, I. Ebbers, and H. Flachs, 2007: Climatological aspects of convective parameters from the NCAR/NCEP reanalysis. Atmos. Res., 83, 294305, https://doi.org/10.1016/j.atmosres.2005.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., G. W. Carbin, and P. T. Marsh, 2014: Increased variability of tornado occurrence in the United States. Science, 346, 349352, https://doi.org/10.1126/science.1257460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childs, S. J., R. S. Schumacher, and J. T. Allen, 2018: Cold-season tornadoes: Climatological and meteorological insights. Wea. Forecasting, 33, 671691, https://doi.org/10.1175/WAF-D-17-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, C. A., and P. W. Arritt, 1995: Numerical simulations of the effect of soil moisture and vegetation cover on the development of deep convection. J. Appl. Meteor., 34, 20292045, https://doi.org/10.1175/1520-0450(1995)034<2029:NSOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, A. R., L. M. Leslie, D. B. Parsons, and J. T. Schaefer, 2017: The impact of the El Niño–Southern Oscillation (ENSO) on winter and early spring US tornado outbreaks. J. Appl. Meteor. Climatol., 56, 24552478, https://doi.org/10.1175/JAMC-D-16-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Leeuw, J., J. Methven, and M. Blackburn, 2017: Physical factors influencing regional precipitation variability attributed using an airmass trajectory method. J. Climate, 30, 73597378, https://doi.org/10.1175/JCLI-D-16-0547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 316, https://doi.org/10.1175/1520-0434(1987)002<0003:TDBLSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and L. F. Bosart, 2001: Extratropical synoptic-scale processes and severe convection. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 27–69.

    • Crossref
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, R. Edwards, R. Thompson, J. Hart, and K. Crosbie, 2006: A simple and flexible method for ranking severe weather events. Wea. Forecasting, 21, 939951, https://doi.org/10.1175/WAF959.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and N. Dotzek, 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554563, https://doi.org/10.1016/j.atmosres.2008.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxler, R., B. Stunder, G. Rolph, A. Stein, and A. Taylor, 2016: HYSPLIT4 user’s guide version 4. NOAA Air Resources Laboratory, 254 pp., https://www.arl.noaa.gov/documents/reports/hysplit_user_guide.pdf.

  • Edwards, R., and S. J. Weiss, 1996: Comparisons between Gulf of Mexico sea surface temperature anomalies and southern U.S. severe thunderstorm frequency in the cool season. 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 1923.

  • Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641653, https://doi.org/10.1175/BAMS-D-11-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichler, T., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19, 20762093, https://doi.org/10.1175/JCLI3725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and H. M. Widen, 2014: Predicting spring tornado activity in the central Great Plains by 1 March. Mon. Wea. Rev., 142, 259267, https://doi.org/10.1175/MWR-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuhrmann, C. M., C. E. Konrad, M. M. Kovach, J. T. McLeod, W. G. Schmitz, and P. G. Dixon, 2014: Ranking of tornado outbreaks across the United States and their climatological characteristics. Wea. Forecasting, 2, 684701, https://doi.org/10.1175/WAF-D-13-00128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. University of Chicago SMRP Research Paper 91, 42 pp.

  • Galway, J. G., 1979: Relationship between precipitation and tornado activity. J. Amer. Water Resour. Assoc., 15, 961964, https://doi.org/10.1029/WR015i004p00961.

    • Search Google Scholar
    • Export Citation
  • Gebauer, J. G., A. Shapiro, E. Fedorovich, and P. Klein, 2018: Convection initiation caused by heterogeneous low-level jets over the Great Plains. Mon. Wea. Rev., 146, 26152637, https://doi.org/10.1175/MWR-D-18-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., T. L. Mote, and H. E. Brooks, 2014: Severe-thunderstorm reanalysis environments and collocated radiosonde observations. J. Appl. Meteor. Climatol., 53, 742751, https://doi.org/10.1175/JAMC-D-13-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, M., D. Rayner, and D. Chen, 2010: Extreme rainfall events in southern Sweden: Where does the moisture come from? Tellus, 62A, 605616, https://doi.org/10.1111/j.1600-0870.2010.00456.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagemeyer, B. C., 1991: A lower-tropospheric thermodynamic climatology for March through September: Some implications for thunderstorm forecasting. Wea. Forecasting, 6, 254270, https://doi.org/10.1175/1520-0434(1991)006<0254:ALTTCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S. L., 1966: The flux of atmospheric water vapor over the Caribbean Sea and the Gulf of Mexico. J. Appl. Meteor., 5, 778788, https://doi.org/10.1175/1520-0450(1966)005<0778:TFOAWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M., L. Shaffrey, K. Hodges, and H. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL053866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfand, H. M., and S. D. Schubert, 1995: Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8, 784806, https://doi.org/10.1175/1520-0442(1995)008<0784:COTSGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R., Y. Yao, E. Yarosh, J. E. Janowiak, and K. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, https://doi.org/10.1175/2011JCLI4097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. International Geophysics Series, Vol. 88, Academic Press, 552 pp.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, J. D., 2007: Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9, 9095, https://doi.org/10.1109/MCSE.2007.55.

  • Jana, S., B. Rajagopalan, M. A. Alexander, and A. J. Ray, 2018: Understanding the dominant sources and tracks of moisture for summer rainfall in the southwest United States. J. Geophys. Res. Atmos., 123, 48504870, https://doi.org/10.1029/2017JD027652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 1996: The Mellor–Yamada level-2.5 scheme in the NCEP Eta model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 333–334.

  • Jung, E., and B. P. Kirtman, 2016: Can we predict seasonal changes in high impact weather in the United States? Environ. Res. Lett., 11, 074018, https://doi.org/10.1088/1748-9326/11/7/074018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, J. R., M. D. Parker, K. D. Sherburn, and G. M. Lackmann, 2017: Rapid evolution of cool season, low-CAPE severe thunderstorm environments. Wea. Forecasting, 32, 763779, https://doi.org/10.1175/WAF-D-16-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klees, A. M., Y. P. Richardson, P. M. Markowski, C. Weiss, J. M. Wurman, and K. K. Kosiba, 2016: Comparison of the tornadic and nontornadic supercells intercepted by VORTEX2 on 10 June 2010. Mon. Wea. Rev., 144, 32013231, https://doi.org/10.1175/MWR-D-15-0345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., G. A. Vecchi, R. Msadek, A. Wittenberg, T. L. Delworth, and F. Zeng, 2015: The seasonality of the Great Plains low-level jet and ENSO relationship. J. Climate, 28, 45254544, https://doi.org/10.1175/JCLI-D-14-00590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2018: Climatological estimates of hourly tornado probability for the United States. Wea. Forecasting, 33, 5969, https://doi.org/10.1175/WAF-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurita, N., 2011: Origin of Arctic water vapor during the ice-growth season. Geophys. Res. Lett., 38, L02709, https://doi.org/10.1029/2010GL046064.

  • Läderach, A., and H. Sodemann, 2016: A revised picture of the atmospheric moisture residence time. Geophys. Res. Lett., 43, 924933, https://doi.org/10.1002/2015GL067449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmivarahan, S., J. M. Lewis, and R. Jabrzemski, 2017: The Gulf of Mexico problem: Return flow analysis. Forecast Error Correction Using Dynamic Data Assimilation, Springer, 149–205.

    • Crossref
    • Export Citation
  • Lee, S.-K., A. T. Wittenberg, D. B. Enfield, S. J. Weaver, C. Wang, and R. Atlas, 2016: US regional tornado outbreaks and their links to spring ENSO phases and North Atlantic SST variability. Environ. Res. Lett., 11, 044008, https://doi.org/10.1088/1748-9326/11/4/044008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lepore, C., M. K. Tippett, and J. T. Allen, 2017: ENSO-based probabilistic forecasts of March–May US tornado and hail activity. Geophys. Res. Lett., 44, 90939101, https://doi.org/10.1002/2017GL074781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., C. M. Hayden, R. T. Merrill, and J. M. Schneider, 1989: GUFMEX: A study of return flow in the Gulf of Mexico. Bull. Amer. Meteor. Soc., 70, 2429, https://doi.org/10.1175/1520-0477(1989)070<0024:GASORF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., S. Lakshmivarahan, J. Hu, R. Edwards, R. A. Maddox, R. L. Thompson, and S. F. Corfidi, 2016: Ensemble forecasting of return flow over the Gulf of Mexico. Electron. J. Severe Storms Meteor., 11 (4), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/155.

  • Liang, Y.-C., J.-Y. Yu, M.-H. Lo, and C. Wang, 2015: The changing influence of El Niño on the Great Plains low-level jet. Atmos. Sci. Lett., 16, 512517, https://doi.org/10.1002/asl.590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindo-Atichati, D., F. Bringas, and G. Goni, 2013: Loop Current excursions and ring detachments during 1993–2009. Int. J. Remote Sens., 34, 50425053, https://doi.org/10.1080/01431161.2013.787504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, P. T., and H. E. Brooks, 2012: Comments on “Tornado risk analysis: Is Dixie Alley an extension of Tornado Alley?” Bull. Amer. Meteor. Soc., 93, 405407, https://doi.org/10.1175/BAMS-D-11-00219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, J. R., and K. C. Mehta, 2006: A recommendation for an Enhanced Fujita scale (EF-Scale), revision 2. Wind Science and Engineering Center, Texas Tech University, 95 pp., http://www.depts.ttu.edu/nwi/pubs/fscale/efscale.pdf.

  • Mercer, A. E., C. M. Shafer, C. A. Doswell III, L. M. Leslie, and M. B. Richman, 2009: Objective classification of tornadic and nontornadic severe weather outbreaks. Mon. Wea. Rev., 137, 43554368, https://doi.org/10.1175/2009MWR2897.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1992: Synoptic analysis of the GUFMEX return-flow event of 10–12 March 1988. J. Appl. Meteor., 31, 849867, https://doi.org/10.1175/1520-0450(1992)031<0849:SAOTGR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mestas-Nuñez, A. M., C. Zhang, and D. B. Enfield, 2005: Uncertainties in estimating moisture fluxes over the Intra-Americas Sea. J. Hydrometeor., 6, 696709, https://doi.org/10.1175/JHM442.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mestas-Nuñez, A. M., D. B. Enfield, and C. Zhang, 2007: Water vapor fluxes over the Intra-Americas Sea: Seasonal and interannual variability and associations with rainfall. J. Climate, 20, 19101922, https://doi.org/10.1175/JCLI4096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metz, N. D., D. M. Schultz, and R. H. Johns, 2004: Extratropical cyclones with multiple warm-front-like baroclinic zones and their relationship to severe convective storms. Wea. Forecasting, 19, 907916, https://doi.org/10.1175/1520-0434(2004)019<0907:ECWMWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, M. J., R. P. Timmer, and J. T. Allen, 2016: Importance of the Gulf of Mexico as a climate driver for U.S. severe thunderstorm activity. Geophys. Res. Lett., 43, 12 29512 304, https://doi.org/10.1002/2016GL071603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, M. J., J. T. Allen, and V. A. Gensini, 2018: The Gulf of Mexico and ENSO influence on subseasonal and seasonal CONUS winter tornado variability. J. Appl. Meteor. Climatol., 57, 24392463, https://doi.org/10.1175/JAMC-D-18-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, R. L., 1987: Air mass modification over the eastern Gulf of Mexico as a function of surface wind fields and Loop Current position. Mon. Wea. Rev., 115, 646652, https://doi.org/10.1175/1520-0493(1987)115<0646:AMMOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, E., and D. Enfield, 2011: The boreal spring variability of the Intra-Americas low-level jet and its relation with precipitation and tornadoes in the eastern United States. Climate Dyn., 36, 247259, https://doi.org/10.1007/s00382-009-0688-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, R. J., and I. Simmonds, 1991: A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Aust. Meteor. Mag., 39, 155166.

    • Search Google Scholar
    • Export Citation
  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, https://doi.org/10.1175/BAMS-D-11-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2008: Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean. J. Geophys. Res., 113, D20104, https://doi.org/10.1029/2008JD009839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 2740, https://doi.org/10.1175/JCLI-D-13-00223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raible, C., P. Della-Marta, C. Schwierz, H. Wernli, and R. Blender, 2008: Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Mon. Wea. Rev., 136, 880897, https://doi.org/10.1175/2007MWR2143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1967: Atmospheric water vapor transport and the water balance of North America: Part I. Characteristics of the water vapor flux field. Mon. Wea. Rev., 95, 403–427, https://doi.org/10.1175/1520-0493(1967)095<0403:AWVTAT>2.3.CO;2.

    • Crossref
    • Export Citation
  • Rasmusson, E. M., 1971: A study of the hydrology of eastern North America using atmospheric vapor flux data. Mon. Wea. Rev., 99, 19135, https://doi.org/10.1175/1520-0493(1971)099<0119:ASOTHO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., and R. Edwards, 1999: The SPC tornado/severe thunderstorm database. Preprints, 11th Conf. Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 215–220.

  • Schaefer, J. T., R. S. Schneider, and M. P. Kay, 2002: The robustness of tornado hazard estimates. Third Symp. on Environmental Applications, Orlando, FL, Amer. Meteor. Soc., 4.2, https://ams.confex.com/ams/pdfpapers/27694.pdf.

  • Schmid, P., and D. Niyogi, 2012: A method for estimating planetary boundary layer heights and its application over the ARM Southern Great Plains site. J. Atmos. Oceanic Technol., 29, 316322, https://doi.org/10.1175/JTECH-D-11-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., B. Livneh, and E. F. Wood, 2012: Representation of terrestrial hydrology and large-scale drought of the continental United States from the North American Regional Reanalysis. J. Hydrometeor., 13, 856876, https://doi.org/10.1175/JHM-D-11-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., and M. D. Parker, 2014: Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments. Wea. Forecasting, 29, 854877, https://doi.org/10.1175/WAF-D-13-00041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., M. D. Parker, J. R. King, and G. M. Lackmann, 2016: Composite environments of severe and non-severe high-shear, low-CAPE convective events. Wea. Forecasting, 31, 18991927, https://doi.org/10.1175/WAF-D-16-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sjostrom, D. J., and J. M. Welker, 2009: The influence of air mass source on the seasonal isotopic composition of precipitation, eastern USA. J. Geochem. Explor., 102, 103112, https://doi.org/10.1016/j.gexplo.2009.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., C. Schwierz, and H. Wernli, 2008: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res., 113, D03107, https://doi.org/10.1029/2007JD008503.

    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and Coauthors, 2017: Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim. Bull. Amer. Meteor. Soc., 98, 17391748, https://doi.org/10.1175/BAMS-D-15-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, A., R. R. Draxler, G. D. Rolph, B. J. Stunder, M. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1990: On the relationship between water vapor over the oceans and sea surface temperature. J. Climate, 3, 634645, https://doi.org/10.1175/1520-0442(1990)003<0634:OTRBWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. A. Randall, I. L. Wittmeyer, D. A. Dazlich, and S. Tjemkes, 1993: The Earth’s radiation budget and its relation to atmospheric hydrology: 3. Comparison of observations over the oceans with a GCM. J. Geophys. Res., 98, 49314950, https://doi.org/10.1029/92JD02520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., 1998: Computation, accuracy and applications of trajectories—A review and bibliography. Atmos. Environ., 32, 947966, https://doi.org/10.1016/S1352-2310(97)00457-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2004: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeor., 5, 656678, https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. B., and P. E. Roundy, 2013: The relationship between the Madden–Julian oscillation and U.S. violent tornado outbreaks in the spring. Mon. Wea. Rev., 141, 20872095, https://doi.org/10.1175/MWR-D-12-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., 2018: Robustness of relations between the MJO and US tornado occurrence. Mon. Wea. Rev., 146, 38733884, https://doi.org/10.1175/MWR-D-18-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. T. Allen, V. A. Gensini, and H. E. Brooks, 2015: Climate and hazardous convective weather. Curr. Climate Change Rep., 1, 6073, https://doi.org/10.1007/s40641-015-0006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., C. Lepore, and J. E. Cohen, 2016: More tornadoes in the most extreme U.S. tornado outbreaks. Science, 354, 14191423, https://doi.org/10.1126/science.aah7393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and K. A. Hoogewind, 2018: Exploring a possible connection between U.S. tornado activity and Arctic sea ice. npj Climate Atmos. Science, 1, 14, https://doi.org/10.1038/s41612-018-0025-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: Using atmospheric budgets as a constraint on surface fluxes. J. Climate, 10, 27962809, https://doi.org/10.1175/1520-0442(1997)010<2796:UABAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39, 667694, https://doi.org/10.1023/A:1005319109110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, https://doi.org/10.1175/2011JCLI4171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, https://doi.org/10.1175/WAF910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vukovich, F. M., 2007: Climatology of ocean features in the Gulf of Mexico using satellite remote sensing data. J. Phys. Oceanogr., 37, 689707, https://doi.org/10.1175/JPO2989.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, C. K., and J. A. Winkler, 2001: Airflow configurations of warm season southerly low-level wind maxima in the Great Plains. Part I: Spatial and temporal characteristics and relationship to convection. Wea. Forecasting, 16, 513530, https://doi.org/10.1175/1520-0434(2001)016<0513:ACOWSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. S., 2018: Introduction to PySPLIT: A Python Toolkit for NOAA ARL’s HYSPLIT Model. Comput. Sci. Eng., 20, 4762, https://doi.org/10.1109/MCSE.2017.3301549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., and S. Nigam, 2008: Variability of the Great Plains low-level jet: Large-scale circulation context and hydroclimate impacts. J. Climate, 21, 15321551, https://doi.org/10.1175/2007JCLI1586.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., S. Baxter, and A. Kumar, 2012: Climatic role of North American low-level jets on U.S. regional tornado activity. J. Climate, 25, 66666683, https://doi.org/10.1175/JCLI-D-11-00568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, https://doi.org/10.1175/JAS3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winschall, A., H. Sodemann, S. Pfahl, and H. Wernli, 2014: How important is intensified evaporation for Mediterranean precipitation extremes? J. Geophys. Res. Atmos., 119, 52405256, https://doi.org/10.1002/2013JD021175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavala-Hidalgo, J., A. Parés-Sierra, and J. Ochoa, 2002: Seasonal variability of the temperature and heat fluxes in the Gulf of Mexico. Atmósfera, 15, 81104.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., and F. H. Carr, 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125, 19311953, https://doi.org/10.1175/1520-0493(1997)125<1931:APCSFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 136 136 26
PDF Downloads 133 133 26

On the Moisture Origins of Tornadic Thunderstorms

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan
© Get Permissions
Restricted access

Abstract

Tornadic thunderstorms rely on the availability of sufficient low-level moisture, but the source regions of that moisture have not been explicitly demarcated. Using the NOAA Air Resources Laboratory HYSPLIT model and a Lagrangian-based diagnostic, moisture attribution was conducted to identify the moisture source regions of tornadic convection. This study reveals a seasonal cycle in the origins and advection patterns of water vapor contributing to winter and spring tornado-producing storms (1981–2017). The Gulf of Mexico is shown to be the predominant source of moisture during both winter and spring, making up more than 50% of all contributions. During winter, substantial moisture contributions for tornadic convection also emanate from the western Caribbean Sea (>19%) and North Atlantic Ocean (>12%). During late spring, land areas (e.g., soil and vegetation) of the contiguous United States (CONUS) play a more influential role (>24%). Moisture attribution was also conducted for nontornadic cases and tornado outbreaks. Findings show that moisture sources of nontornadic events are more proximal to the CONUS than moisture sources of tornado outbreaks. Oceanic influences on the water vapor content of air parcels were also explored to determine if they can increase the likelihood of an air mass attaining moisture that will eventually contribute to severe thunderstorms. Warmer sea surface temperatures were generally found to enhance evaporative fluxes of overlying air parcels. The influence of atmospheric features on synoptic-scale moisture advection was also analyzed; stronger extratropical cyclones and Great Plains low-level jet occurrences lead to increased meridional moisture flux.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maria J. Molina, maria.janet.molina@gmail.com

Abstract

Tornadic thunderstorms rely on the availability of sufficient low-level moisture, but the source regions of that moisture have not been explicitly demarcated. Using the NOAA Air Resources Laboratory HYSPLIT model and a Lagrangian-based diagnostic, moisture attribution was conducted to identify the moisture source regions of tornadic convection. This study reveals a seasonal cycle in the origins and advection patterns of water vapor contributing to winter and spring tornado-producing storms (1981–2017). The Gulf of Mexico is shown to be the predominant source of moisture during both winter and spring, making up more than 50% of all contributions. During winter, substantial moisture contributions for tornadic convection also emanate from the western Caribbean Sea (>19%) and North Atlantic Ocean (>12%). During late spring, land areas (e.g., soil and vegetation) of the contiguous United States (CONUS) play a more influential role (>24%). Moisture attribution was also conducted for nontornadic cases and tornado outbreaks. Findings show that moisture sources of nontornadic events are more proximal to the CONUS than moisture sources of tornado outbreaks. Oceanic influences on the water vapor content of air parcels were also explored to determine if they can increase the likelihood of an air mass attaining moisture that will eventually contribute to severe thunderstorms. Warmer sea surface temperatures were generally found to enhance evaporative fluxes of overlying air parcels. The influence of atmospheric features on synoptic-scale moisture advection was also analyzed; stronger extratropical cyclones and Great Plains low-level jet occurrences lead to increased meridional moisture flux.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maria J. Molina, maria.janet.molina@gmail.com
Save