Circumglobal Response to Prescribed Soil Moisture over North America

Haiyan Teng National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Haiyan Teng in
Current site
Google Scholar
PubMed
Close
,
Grant Branstator National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Grant Branstator in
Current site
Google Scholar
PubMed
Close
,
Ahmed B. Tawfik National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Ahmed B. Tawfik in
Current site
Google Scholar
PubMed
Close
, and
Patrick Callaghan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Patrick Callaghan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A series of idealized prescribed soil moisture experiments is performed with the atmosphere/land stand-alone configuration of the Community Earth System Model, version 1, in an effort to find sources of predictability for high-impact stationary wave anomalies observed in recent boreal summers. We arbitrarily prescribe soil water to have a zero value at selected domains in the continental United States and run 100-member ensembles to examine the monthly and seasonal mean response. Contrary to the lack of a substantial response in the boreal winter, the summertime circulation response is robust, consistent, and circumglobal. While the stationary wave response over the North America and North Atlantic sectors can be well explained by the reaction of a linear dynamical system to heating anomalies caused by the imposed dry land surface, nonlinear processes involving synoptic eddies play a crucial role in forming the remote response in Eurasia and the North Pacific Ocean. A number of other possible factors contributing to the circulation responses are also discussed. Overall, the experiments suggest that, in the boreal summer, soil moisture may contribute to the predictability of high-impact stationary wave events, which can impact regions that are great distances from these source regions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haiyan Teng, hteng@ucar.edu

Abstract

A series of idealized prescribed soil moisture experiments is performed with the atmosphere/land stand-alone configuration of the Community Earth System Model, version 1, in an effort to find sources of predictability for high-impact stationary wave anomalies observed in recent boreal summers. We arbitrarily prescribe soil water to have a zero value at selected domains in the continental United States and run 100-member ensembles to examine the monthly and seasonal mean response. Contrary to the lack of a substantial response in the boreal winter, the summertime circulation response is robust, consistent, and circumglobal. While the stationary wave response over the North America and North Atlantic sectors can be well explained by the reaction of a linear dynamical system to heating anomalies caused by the imposed dry land surface, nonlinear processes involving synoptic eddies play a crucial role in forming the remote response in Eurasia and the North Pacific Ocean. A number of other possible factors contributing to the circulation responses are also discussed. Overall, the experiments suggest that, in the boreal summer, soil moisture may contribute to the predictability of high-impact stationary wave events, which can impact regions that are great distances from these source regions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haiyan Teng, hteng@ucar.edu
Save
  • Ambrizzi, T., B. J. Hoskins, and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52, 36613672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, https://doi.org/10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40, 16891708, https://doi.org/10.1175/1520-0469(1983)040<1689:HEPIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1990: Low-frequency patterns induced by stationary waves. J. Atmos. Sci., 47, 629649, https://doi.org/10.1175/1520-0469(1990)047<0629:LFPIBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1992: The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci., 49, 19241946, https://doi.org/10.1175/1520-0469(1992)049<1924:TMOLFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52, 207226, https://doi.org/10.1175/1520-0469(1995)052<0207:OOSTAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2017: Tropospheric waveguide teleconnections and their seasonality. J. Atmos. Sci., 74, 15131532, https://doi.org/10.1175/JAS-D-16-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and M. Mak, 1990: Symbiotic relation between planetary and synoptic-scale waves. J. Atmos. Sci., 47, 29532968, https://doi.org/10.1175/1520-0469(1990)047<2953:SRBPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and H. M. van den Dool, 1994: Dynamical decomposition of low-frequency tendencies. J. Atmos. Sci., 51, 20862100, https://doi.org/10.1175/1520-0469(1994)051<2086:DDOLFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conil, S., H. Douville, and S. Tyteca, 2007: The relative influence of soil moisture and SST in climate predictability explored within ensembles of AMIP type experiments. Climate Dyn., 28, 125145, https://doi.org/10.1007/s00382-006-0172-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2005: The land surface contribution to the potential predictability of boreal summer season climate. J. Hydrometeor., 6, 618632, https://doi.org/10.1175/JHM444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., R. D. Koster, and Z. Guo, 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198, https://doi.org/10.1175/JHM532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Evidence for enhanced land–atmosphere feedback in a warming climate. J. Hydrometeor., 13, 981995, https://doi.org/10.1175/JHM-D-11-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., 2002: Influence of soil moisture on the Asian and African monsoon. Part II: Interannual variability. J. Climate, 15, 701720, https://doi.org/10.1175/1520-0442(2002)015<0701:IOSMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., and F. Chauvin, 2000: Relevance of soil moisture for seasonal climate predictions: A preliminary study. Climate Dyn., 16, 719736, https://doi.org/10.1007/s003820000080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., J. Colin, E. Krug, J. Cattiaux, and S. Thao, 2016: Midlatitude daily summer temperature reshaped by soil moisture under climate change. Geophys. Res. Lett., 43, 812818, https://doi.org/10.1002/2015GL066222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, https://doi.org/10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S., 1998: The growth and decay of low-frequency anomalies in a GCM. J. Atmos. Sci., 55, 415428, https://doi.org/10.1175/1520-0469(1998)055<0415:TGADOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions: Part I: Framework development. J. Hydrometeor., 4, 552569, https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture–atmosphere interaction during the 2003 European summer heat waves. J. Climate, 20, 50815099, https://doi.org/10.1175/JCLI4288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., J. Rajczak, and C. Schär, 2012: Changes in European summer temperature variability revisited. Geophys. Res. Lett., 39, L19702, https://doi.org/10.1029/2012GL052730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fragkoulidis, G., V. Wirth, P. Bossmann, and A. H. Fink, 2018: Linking Northern Hemisphere temperature extremes to Rossby wave packets. Quart. J. Roy. Meteor. Soc., 144, 553566, https://doi.org/10.1002/qj.3228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. A. Holtslag, F. D’Andrea, and M. Ek, 2013: Surface and atmospheric controls on the onset of moisture convection over land. J. Hydrometeor., 14, 14431462, https://doi.org/10.1175/JHM-D-12-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, https://doi.org/10.1038/nature14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Woollings, 2015: Persistent extratropical regimes and climate extremes. Curr. Climate Change Rep., 1, 115124, https://doi.org/10.1007/s40641-015-0020-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., A. J. Simmons, and D. G. Andrews, 1977: Energy dispersion in a barotropic atmosphere. Quart. J. Roy. Meteor. Soc., 103, 553567, https://doi.org/10.1002/qj.49710343802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis of the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, https://doi.org/10.2151/jmsj.87.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Y. Chang, H. Wang, and S. D. Schubert, 2016: Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summers: A comprehensive analysis over North America. J. Climate, 29, 73457364, https://doi.org/10.1175/JCLI-D-16-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2017: Hydroclimate variability and predictability: A survey of recent research. Hydrol. Earth Syst. Sci., 21, 37773798, https://doi.org/10.5194/hess-21-3777-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-H., S. Lee, H.-J. Song, and C.-H. Ho, 2017: The recent increase in the occurrence of a boreal summer teleconnection and its relationship with temperature extremes. J. Climate, 30, 74937504, https://doi.org/10.1175/JCLI-D-16-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., S. Rahmstorf, K. Kornhuber, B. A. Steinman, S. K. Miller, S. Petri, and D. Coumou, 2018: Projected changes in persistent extreme weather events: The role of quasi-resonant amplification. Sci. Adv., 4, eaat3272, https://doi.org/10.1126/sciadv.aat3272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., and Coauthors, 2018: Land-atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Ann. N. Y. Acad. Sci., 1436, 1935, https://doi.org/10.1111/nyas.13912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2013: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl. Acad. Sci. USA, 110, 53365341, https://doi.org/10.1073/pnas.1222000110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336, https://doi.org/10.1038/nature02300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: On the cause of the 1930s dust bowl. Science, 303, 18551859, https://doi.org/10.1126/science.1095048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary wave favor particular regional weather extremes. Nat. Climate Change, 4, 704709, https://doi.org/10.1038/nclimate2271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tawfik, A. B., P. A. Dirmeyer, and J. A. Santanello Jr., 2015: The heated condensation framework. Part I: Description and Southern Great Plains case study. J. Hydrometeor., 16, 19291945, https://doi.org/10.1175/JHM-D-14-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, H. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of U.S. heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 10561061, https://doi.org/10.1038/ngeo1988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, G. A. Meehl, and W. M. Washington, 2016: Projected intensification of subseasonal temperature variability and heat waves in the Great Plains. Geophys. Res. Lett., 43, 21652173, https://doi.org/10.1002/2015GL067574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2012: Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res., D17103, https://doi.org/10.1029/2012JD018020.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. Branstator, and P. A. Arkin, 1988: Origins of the 1988 North American drought. Science, 242, 16401645, https://doi.org/10.1126/science.242.4886.1640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperature. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S. Schubert, and R. Koster, 2017: North American drought and links to northern Eurasia: The role of stationary Rossby waves. Climate Extremes: Patterns and Mechanisms, Geophys. Monogr., Vol. 226, Amer. Geophys. Union, 195–221, https://doi.org/10.1002/9781119068020.ch12.

    • Crossref
    • Export Citation
  • Wang, H., S. Schubert, R. Koster, and Y. Chang, 2019: Phase-locking of the boreal summer atmospheric response to dry land surface anomalies in the Northern Hemisphere. J. Climate, 32, 10811099, https://doi.org/10.1175/JCLI-D-18-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, I. N., and Coauthors, 2016: Land–atmosphere coupling and climate prediction over the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 121, 12 12512 144, https://doi.org/10.1002/2016JD025223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasui, S., and M. Watanabe, 2010: Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Climate, 23, 20932114, https://doi.org/10.1175/2009JCLI3323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1732 620 63
PDF Downloads 1445 372 43