Ocean Salinity as a Precursor of Summer Rainfall over the East Asian Monsoon Region

Biao Chen State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, and Graduate School, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Biao Chen in
Current site
Google Scholar
PubMed
Close
,
Huiling Qin School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Huiling Qin in
Current site
Google Scholar
PubMed
Close
,
Guixing Chen School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Guixing Chen in
Current site
Google Scholar
PubMed
Close
, and
Huijie Xue State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China, and School of Marine Sciences, University of Maine, Orono, Maine

Search for other papers by Huijie Xue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The sea surface salinity (SSS) varies largely as a result of the evaporation–precipitation difference, indicating the source or sink of regional/global water vapor. This study identifies a relationship between the spring SSS in the tropical northwest Pacific (TNWP) and the summer rainfall of the East Asian monsoon region (EAMR) during 1980–2017. Analysis suggests that the SSS–rainfall link involves the coupled ocean–atmosphere–land processes with a multifacet evolution. In spring, evaporation and water vapor flux divergence were enhanced in some years over the TNWP where an anomalous atmospheric anticyclone was established and a high SSS was well observed. As a result, the convergence of water vapor flux and soil moisture over the EAMR was strengthened. This ocean-to-land water vapor transport pattern was sustained from spring to summer and played a leading role in the EAMR rainfall. Moreover, the change in local spring soil moisture helped to amplify the summer rainfall by modifying surface thermal conditions and precipitation systems over the EAMR. As the multifacet evolution is closely related to the large-scale ocean-to-land water vapor transport, it can be well represented by the spring SSS in the TNWP. A random forest regression algorithm was used to further evaluate the relative importance of spring SSS in predicting summer rainfall compared to other climate indices. As the SSS is now monitored routinely by satellite and the global Argo float array, it can serve as a good metric for measuring the water cycle and as a precursor for predicting the EAMR rainfall.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (http://www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huijie Xue, huijiexue@scsio.ac.cn

Abstract

The sea surface salinity (SSS) varies largely as a result of the evaporation–precipitation difference, indicating the source or sink of regional/global water vapor. This study identifies a relationship between the spring SSS in the tropical northwest Pacific (TNWP) and the summer rainfall of the East Asian monsoon region (EAMR) during 1980–2017. Analysis suggests that the SSS–rainfall link involves the coupled ocean–atmosphere–land processes with a multifacet evolution. In spring, evaporation and water vapor flux divergence were enhanced in some years over the TNWP where an anomalous atmospheric anticyclone was established and a high SSS was well observed. As a result, the convergence of water vapor flux and soil moisture over the EAMR was strengthened. This ocean-to-land water vapor transport pattern was sustained from spring to summer and played a leading role in the EAMR rainfall. Moreover, the change in local spring soil moisture helped to amplify the summer rainfall by modifying surface thermal conditions and precipitation systems over the EAMR. As the multifacet evolution is closely related to the large-scale ocean-to-land water vapor transport, it can be well represented by the spring SSS in the TNWP. A random forest regression algorithm was used to further evaluate the relative importance of spring SSS in predicting summer rainfall compared to other climate indices. As the SSS is now monitored routinely by satellite and the global Argo float array, it can serve as a good metric for measuring the water cycle and as a precursor for predicting the EAMR rainfall.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (http://www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huijie Xue, huijiexue@scsio.ac.cn
Save
  • Bingham, F. M., and T. Lee, 2017: Space and time scales of sea surface salinity and freshwater forcing variability in the global ocean (60°S–60°N). J. Geophys. Res. Oceans, 122, 29092922, https://doi.org/10.1002/2016JC012216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Chen, G., R. Yoshida, W. Sha, T. Iwasaki, and H. Qin, 2014: Convective instability associated with the eastward-propagating rainfall episodes over eastern China during the warm season. J. Climate, 27, 23312339, https://doi.org/10.1175/JCLI-D-13-00443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Sha, T. Iwasaki, and Z. Wen, 2017: Diurnal cycle of a heavy rainfall corridor over East Asia. Mon. Wea. Rev., 145, 33653389, https://doi.org/10.1175/MWR-D-16-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, X. Lin, and J. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 10271041, https://doi.org/10.1007/s00382-015-2630-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, and Y. Du, 2017: Roles of tropical SST anomalies in modulating the western North Pacific anomalous cyclone during strong La Niña decaying years. Climate Dyn., 49, 633647, https://doi.org/10.1007/s00382-016-3364-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., L. M. Swenson, and W. Kong, 2017: Role of seasonal transitions and the westerlies in the interannual variability of the East Asian summer monsoon precipitation. Geophys. Res. Lett., 44, 37883795, https://doi.org/10.1002/2017GL072739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbett, C. M., B. Subrahmanyam, and B. S. Giese, 2017: A comparison of sea surface salinity in the equatorial Pacific Ocean during the 1997–1998, 2012–2013, and 2014–2015 ENSO events. Climate Dyn., 49, 35133526, https://doi.org/10.1007/s00382-017-3527-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. J. Meteor. Soc. Japan, 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Dong, G., H. Zhang, A. Moise, L. Hanson, P. Liang, and H. Ye, 2016: CMIP5 model-simulated onset, duration and intensity of the Asian summer monsoon in current and future climate. Climate Dyn., 46, 355382, https://doi.org/10.1007/s00382-015-2588-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P., 2015: Ocean salinity and the global water cycle. Oceanography, 28, 2031, https://doi.org/10.5670/oceanog.2015.03.

  • Feng, J., W. Chen, C. Y. Tam, and W. Zhou, 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 20912101, https://doi.org/10.1002/joc.2217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y. F., and G. S. Liu, 2003: Precipitation characteristics in mid-latitude East Asia as observed by TRMM PR and TMI. J. Meteor. Soc. Japan, 81, 13531369, https://doi.org/10.2151/jmsj.81.1353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, H., W. Jiang, and W. Li, 2015: Changed relationships between the East Asian summer monsoon circulations and the summer rainfall in eastern China. Acta Meteor. Sin., 28, 10751084, https://dx.doi.org/10.1007/s13351-014-4327-5.

    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and C. H. Ho, 2003: Arctic oscillation signals in the East Asian summer monsoon. J. Geophys. Res., 108, 40664066, https://doi.org/10.1029/2002JD002193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A., C. Giulivi, J. Busecke, and F. Bingham, 2015: Differences among subtropical surface salinity patterns. Oceanography, 28, 3239, https://doi.org/10.5670/oceanog.2015.02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, and T. Delsole, 2011: Land surface impacts on subseasonal and seasonal predictability. Geophys. Res. Lett., 38, L17808, https://doi.org/10.1029/2011GL048611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., A. Lin, D. Gu, C. Li, B. Zheng, and T. Zhou, 2017: Interannual variability of eastern China summer rainfall: The origins of the meridional triple and dipole modes. Climate Dyn., 48, 683696, https://doi.org/10.1007/s00382-016-3103-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., S.-P. Xie, and G. Huang, 2017: Orographically anchored El Niño effect on summer rainfall in central China. J. Climate, 30, 10 03710 045, https://doi.org/10.1175/JCLI-D-17-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and F. Sun, 1992: Impact of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243256, https://doi.org/10.2151/jmsj1965.70.1B_243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-E., and S.-Y. Hong, 2007: Impact of soil moisture anomalies on summer rainfall over East Asia: A regional climate model study. J. Climate, 20, 57325743, https://doi.org/10.1175/2006JCLI1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and M.-T. Li, 1984: The monsoon of East Asia and its global associations—A survey. Bull. Amer. Meteor. Soc., 65, 114125, https://doi.org/10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., R. W. Schmitt, C. C. Ummenhofer, and K. B. Karnauskas, 2016a: Implications of North Atlantic sea surface salinity for summer precipitation over the US Midwest: Mechanisms and predictive value. J. Climate, 29, 31433159, https://doi.org/10.1175/JCLI-D-15-0520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., R. W. Schmitt, C. C. Ummenhofer, and K. B. Karnauskas, 2016b: North Atlantic salinity as a predictor of Sahel rainfall. Sci. Adv., 2, e1501588, https://doi.org/10.1126/sciadv.1501588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., R. W. Schmitt, and C. C. Ummenhofer, 2018: The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events. Climate Dyn., 50, 12911305, https://doi.org/10.1007/s00382-017-3685-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., R. Zhang, and Z. Zuo, 2017: Effect of spring precipitation on summer precipitation in eastern China: Role of soil moisture. J. Climate, 30, 91839194, https://doi.org/10.1175/JCLI-D-17-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., C. Y. Li, Y. Wang, and Y. F. Fu, 2013: Climatic characteristics of convective and stratiform precipitation over the tropical and subtropical areas as derived from TRMM PR. Sci. China Earth Sci., 56, 375385, https://doi.org/10.1007/s11430-012-4474-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, T., R. W. Schmitt, and L. Li, 2018: Global search for autumn-lead sea surface salinity predictors of winter precipitation in southwestern United States. Geophys. Res. Lett., 45, 84458454, https://doi.org/10.1029/2018GL079293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagano, A., T. Hasegawa, I. Ueki, and K. Ando, 2017: El Niño–Southern Oscillation-time scale covariation of sea surface salinity and freshwater flux in the western tropical and northern subtropical Pacific. Geophys. Res. Lett., 44, 68956903, https://doi.org/10.1002/2017GL073573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, C., B. Zhu, J. Gao, and H. Kang, 2017: Source apportionment of atmospheric water over East Asia – a source tracer study in CAM5.1. Geosci. Model Dev., 10, 673688, https://doi.org/10.5194/gmd-10-673-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schar, C., D. Luthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741, https://doi.org/10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1995: The ocean component of the global water cycle. Rev. Geophys., 33, 13951409, https://doi.org/10.1029/95RG00184.

  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography, 21, 1219, https://doi.org/10.5670/oceanog.2008.63.

  • Scipal, K., M. Drusch, and W. Wagner, 2008: Assimilation of a ERS scatterometer derived soil moisture index in the ECMWF numerical weather prediction system. Adv. Water Resour., 31, 11011112, https://doi.org/10.1016/j.advwatres.2008.04.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., H. Wang, and W. Yuan, 2009: A possible mechanism for the co-variability of the boreal spring Antarctic Oscillation and the Yangtze River valley summer rainfall. Int. J. Climatol., 29, 12761284, https://doi.org/10.1002/joc.1773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: how does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Z. Wu, J. Li, J. Liu, C.-P. Chang, Y. Ding, and G. Wu, 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 44494463, https://doi.org/10.1175/2008JCLI2183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, B. P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, https://doi.org/10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., P. A. Dirmeyer, M. G. Bosilovich, and R. Wu, 2012: Water vapor sources for Yangtze River valley rainfall: Climatology, variability, and implications for rainfall forecasting. J. Geophys. Res., 117, D05126, https://doi.org/10.1029/2011JD016902.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, https://doi.org/10.1029/2009JD011733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, M., Q. Zhang, and V. P. Singh, 2015: Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China. Int. J. Climatol., 35, 35563567, https://doi.org/10.1002/joc.4228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., 2010: CPC unified gauge-based analysis of global daily precipitation. 24th Conf. on Hydrology, Atlanta, GA, Amer. Meteor. Soc., 2.3A, https://ams.confex.com/ams/90annual/webprogram/Paper163676.html.

  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y. K., H. M. H. Juang, W. P. Li, S. Prince, R. DeFries, Y. Jiao, and R. Vasic, 2004: Role of land surface processes in monsoon development: East Asia and West Africa. J. Geophys. Res., 109, D03105, https://doi.org/10.1029/2003JD003556.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and K. M. Lau, 1998: Influences of sea surface temperature and ground wetness on Asian summer monsoon. J. Climate, 11, 32303246, https://doi.org/10.1175/1520-0442(1998)011<3230:IOSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, H., and R. Lu, 2012: Dominant patterns of summer rainfall anomalies in East China during 1951–2006. Adv. Atmos. Sci., 29, 695704, https://doi.org/10.1007/s00376-012-1153-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2011: A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res., 116, C10025, https://doi.org/10.1029/2010JC006937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, S. A. Josey, T. Lee, A. Kumar, C. Wen, and Y. Xue, 2017: The global ocean water cycle in atmospheric reanalysis, satellite, and ocean salinity. J. Climate, 30, 38293852, https://doi.org/10.1175/JCLI-D-16-0479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., R. W. Schmitt, L. Li, Q. Wang, and D. Wang, 2019: Forecast of summer precipitation in the Yangtze River valley based on South China Sea springtime sea surface salinity. Climate Dyn., https://doi.org/10.1007/s00382-019-04878-y, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., L. Wu, and W. Dong, 2011: Land–atmosphere coupling and summer climate variability over East Asia. J. Geophys. Res., 116, D05117, https://doi.org/10.1029/2010JD014714.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Zhou, 2015: Drought over East Asia: A review. J. Climate, 28, 33753399, https://doi.org/10.1175/JCLI-D-14-00259.1.

  • Zhong, S., T. Yang, Y. Qian, J. Zhu, and F. Wu, 2018: Temporal and spatial variations of soil moisture–precipitation feedback in East China during the East Asian summer monsoon period: A sensitivity study. Atmos. Res., 213, 163172, https://doi.org/10.1016/j.atmosres.2018.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., and R. C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, https://doi.org/10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
  • Zuo, Z., and R. Zhang, 2009: Temporal and spatial features of the soil moisture in boreal spring in eastern China. Sci. China, 52D, 269278, https://doi.org/10.1007/s11430-009-0011-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, Z., and R. Zhang, 2016: Influence of soil moisture in eastern China on the East Asian summer monsoon. Adv. Atmos. Sci., 33, 151163, https://doi.org/10.1007/s00376-015-5024-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 742 204 16
PDF Downloads 565 102 9