Climate Change Amplification of Natural Drought Variability: The Historic Mid-Twentieth-Century North American Drought in a Warmer World

Benjamin I. Cook NASA Goddard Institute for Space Studies, New York, New York
Division of Ocean and Climate Physics, Lamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Benjamin I. Cook in
Current site
Google Scholar
PubMed
Close
,
Richard Seager Division of Ocean and Climate Physics, Lamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Richard Seager in
Current site
Google Scholar
PubMed
Close
,
A. Park Williams Tree Ring Lab, Lamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by A. Park Williams in
Current site
Google Scholar
PubMed
Close
,
Michael J. Puma Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Michael J. Puma in
Current site
Google Scholar
PubMed
Close
,
Sonali McDermid Department of Environmental Studies, New York University, New York, New York

Search for other papers by Sonali McDermid in
Current site
Google Scholar
PubMed
Close
,
Maxwell Kelley NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Maxwell Kelley in
Current site
Google Scholar
PubMed
Close
, and
Larissa Nazarenko NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Larissa Nazarenko in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the mid-twentieth century (1948–57), North America experienced a severe drought forced by cold tropical Pacific sea surface temperatures (SSTs). If these SSTs recurred, it would likely cause another drought, but in a world substantially warmer than the one in which the original event took place. We use a 20-member ensemble of the GISS climate model to investigate the drought impacts of a repetition of the mid-twentieth-century SST anomalies in a significantly warmer world. Using observed SSTs and mid-twentieth-century forcings (Hist-DRGHT), the ensemble reproduces the observed precipitation deficits during the cold season (October–March) across the Southwest, southern plains, and Mexico and during the warm season (April–September) in the southern plains and the Southeast. Under analogous SST forcing and enhanced warming (Fut-DRGHT, ≈3 K above preindustrial), cold season precipitation deficits are ameliorated in the Southwest and southern plains and intensified in the Southeast, whereas during the warm season precipitation deficits are enhanced across North America. This occurs primarily from greenhouse gas–forced trends in mean precipitation, rather than changes in SST teleconnections. Cold season runoff deficits in Fut-DRGHT are significantly amplified over the Southeast, but otherwise similar to Hist-DRGHT over the Southwest and southern plains. In the warm season, however, runoff and soil moisture deficits during Fut-DRGHT are significantly amplified across the southern United States, a consequence of enhanced precipitation deficits and increased evaporative losses due to warming. Our study highlights how internal variability and greenhouse gas–forced trends in hydroclimate are likely to interact over North America, including how changes in both precipitation and evaporative demand will affect future drought.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin I. Cook, benjamin.i.cook@nasa.gov

Abstract

In the mid-twentieth century (1948–57), North America experienced a severe drought forced by cold tropical Pacific sea surface temperatures (SSTs). If these SSTs recurred, it would likely cause another drought, but in a world substantially warmer than the one in which the original event took place. We use a 20-member ensemble of the GISS climate model to investigate the drought impacts of a repetition of the mid-twentieth-century SST anomalies in a significantly warmer world. Using observed SSTs and mid-twentieth-century forcings (Hist-DRGHT), the ensemble reproduces the observed precipitation deficits during the cold season (October–March) across the Southwest, southern plains, and Mexico and during the warm season (April–September) in the southern plains and the Southeast. Under analogous SST forcing and enhanced warming (Fut-DRGHT, ≈3 K above preindustrial), cold season precipitation deficits are ameliorated in the Southwest and southern plains and intensified in the Southeast, whereas during the warm season precipitation deficits are enhanced across North America. This occurs primarily from greenhouse gas–forced trends in mean precipitation, rather than changes in SST teleconnections. Cold season runoff deficits in Fut-DRGHT are significantly amplified over the Southeast, but otherwise similar to Hist-DRGHT over the Southwest and southern plains. In the warm season, however, runoff and soil moisture deficits during Fut-DRGHT are significantly amplified across the southern United States, a consequence of enhanced precipitation deficits and increased evaporative losses due to warming. Our study highlights how internal variability and greenhouse gas–forced trends in hydroclimate are likely to interact over North America, including how changes in both precipitation and evaporative demand will affect future drought.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin I. Cook, benjamin.i.cook@nasa.gov
Save
  • Allen, C. D., and D. D. Breshears, 1998: Drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation. Proc. Natl. Acad. Sci. USA, 95, 14 83914 842, https://doi.org/10.1073/pnas.95.25.14839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and R. G. Anderson, 2018: 21st century California drought risk linked to model fidelity of the El Niño teleconnection. npj Climate Atmos. Sci., 1, 21, https://doi.org/10.1038/s41612-018-0032-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreadis, K., E. Clark, A. Wood, A. Hamlet, and D. Lettenmaier, 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, https://doi.org/10.1175/JHM450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ault, T. R., J. S. Mankin, B. I. Cook, and J. E. Smerdon, 2016: Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest. Sci. Adv., 2, e1600873, https://doi.org/10.1126/sciadv.1600873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., J. Sheffield, and P. C. D. Milly, 2017: Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett., 44, 236244, https://doi.org/10.1002/2016GL071921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, N., and A. Hall, 2017: Anthropogenic warming impacts on California snowpack during drought. Geophys. Res. Lett., 44, 25112518, https://doi.org/10.1002/2016GL072104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, D. A., and Coauthors, 2019: Investigating the causes of increased twentieth-century fall precipitation over the southeastern United States. J. Climate, 32, 575590, https://doi.org/10.1175/JCLI-D-18-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonfils, C. J. W., B. D. Santer, T. J. Phillips, K. Marvel, L. R. Leung, C. Doutriaux, and A. Capotondi, 2015: Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate. J. Climate, 28, 999710 013, https://doi.org/10.1175/JCLI-D-15-0341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and Coauthors, 2017: Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun., 8, 110, https://doi.org/10.1038/s41467-017-00114-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chepil, W. S., F. H. Siddoway, and D. V. Armbrust, 1963: Climatic index of wind erosion conditions in the Great Plains. Soil Sci. Soc. Amer. J., 27, 449452, https://doi.org/10.2136/sssaj1963.03615995002700040025x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015a: Unprecedented 21st century drought risk in the American Southwest and central plains. Sci. Adv., 1, e1400082, https://doi.org/10.1126/sciadv.1400082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., S. P. Shukla, M. J. Puma, and L. S. Nazarenko, 2015b: Irrigation as an historical climate forcing. Climate Dyn., 44, 17151730, https://doi.org/10.1007/s00382-014-2204-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. S. Mankin, and K. J. Anchukaitis, 2018: Climate change and drought: From past to future. Curr. Climate Change Rep., 4, 164179, https://doi.org/10.1007/s40641-018-0093-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, https://doi.org/10.1038/nclimate1633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Kauwe, M. G., and Coauthors, 2013: Forest water use and water use efficiency at elevated CO2: A model-data intercomparison at two contrasting temperate forest FACE sites. Global Change Biol., 19, 17591779, https://doi.org/10.1111/gcb.12164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, A. Rosati, G. A. Vecchi, and A. T. Wittenberg, 2015: A link between the hiatus in global warming and North American drought. J. Climate, 28, 38343845, https://doi.org/10.1175/JCLI-D-14-00616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., and E. R. Wahl, 2015: Recent California water year precipitation deficits: A 440-year perspective. J. Climate, 28, 46374652, https://doi.org/10.1175/JCLI-D-14-00774.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döll, P., 2002: Impact of climate change and variability on irrigation requirements: A global perspective. Climatic Change, 54, 269293, https://doi.org/10.1023/A:1016124032231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, J., and Coauthors, 2014: Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA, 111, 32393244, https://doi.org/10.1073/pnas.1222474110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., B. L. Otto-Bliesner, and S. Stevenson, 2018: ENSO’s changing influence on temperature, precipitation, and wildfire in a warming climate. Geophys. Res. Lett., 45, 92169225, https://doi.org/10.1029/2018GL079022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faurès, J.-M., J. Hoogeveen, and J. Bruinsma, 2002: The FAO irrigated area forecast for 2030. Food and Agriculture Organization of the United Nations, 14 pp., http://www.fao.org/3/I9278EN/i9278en.pdf.

  • Frank, D. C., and Coauthors, 2015: Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Climate Change, 5, 579583, https://doi.org/10.1038/nclimate2614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuentes-Franco, R., F. Giorgi, E. Coppola, and F. Kucharski, 2016: The role of ENSO and PDO in variability of winter precipitation over North America from twenty first century CMIP5 projections. Climate Dyn., 46, 32593277, https://doi.org/10.1007/s00382-015-2767-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fye, F. K., D. W. Stahle, and E. R. Cook, 2003: Paleoclimatic analogs to twentieth-century moisture regimes across the United States. Bull. Amer. Meteor. Soc., 84, 901909, https://doi.org/10.1175/BAMS-84-7-901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heim, R. R., 1988: About that drought…. Weatherwise, 41, 266271, https://doi.org/10.1080/00431672.1988.9925276.

  • Heim, R. R., 2017: A Comparison of the early twenty-first century drought in the United States to the 1930s and 1950s drought episodes. Bull. Amer. Meteor. Soc., 98, 25792592, https://doi.org/10.1175/BAMS-D-16-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbel, C. H., F. N. Ares, and R. A. Wright, 1972: Drought effects on a semidesert grassland range. Ecology, 53, 10841093, https://doi.org/10.2307/1935420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herweijer, C., R. Seager, E. R. Cook, and J. Emile-Geay, 2007: North American droughts of the last millennium from a gridded network of tree-ring data. J. Climate, 20, 13531376, https://doi.org/10.1175/JCLI4042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., X. W. Quan, and J. Eischeid, 2009: Distinct causes for two principal US droughts of the 20th century. Geophys. Res. Lett., 36, L19708, https://doi.org/10.1029/2009GL039860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, P., 1976: The worst droughts of the 20th century. American Weather Stories, Government Printing Office.

  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T. F., D. Y. Hollinger, G. Bohrer, D. Dragoni, J. W. Munger, H. P. Schmid, and A. D. Richardson, 2013: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499, 324327, https://doi.org/10.1038/nature12291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., D. J. Karoly, and B. J. Henley, 2017: Australian climate extremes at 1.5°C and 2°C of global warming. Nat. Climate Change, 7, 412416, https://doi.org/10.1038/nclimate3296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedlacek, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., S. Coats, T. F. Stocker, A. G. Pendergrass, B. M. Sanderson, C. C. Raible, and J. E. Smerdon, 2017: Projected drought risk in 1.5°C and 2°C warmer climates. Geophys. Res. Lett., 44, 74197428, https://doi.org/10.1002/2017GL074117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. Deser, I. R. Simpson, and L. Terray, 2018: Attributing the U.S. Southwest’s recent shift into drier conditions. Geophys. Res. Lett., 45, 62516261, https://doi.org/10.1029/2018GL078312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowry, R. L., 1959: A study of droughts in Texas. Texas Board of Water Engineers Bull. 5914, 81 pp., http://www.twdb.texas.gov/publications/reports/bulletins/doc/B5914/B5914.pdf.

  • Mankin, J. S., J. E. Smerdon, B. I. Cook, A. P. Williams, and R. Seager, 2017: The curious case of projected twenty-first-century drying but greening in the American West. J. Climate, 30, 86898710, https://doi.org/10.1175/JCLI-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mankin, J. S., R. Seager, J. E. Smerdon, B. I. Cook, A. P. Williams, and R. Horton, 2018: Blue water tradeoffs with vegetation in a CO2-enriched climate. Geophys. Res. Lett., 45, 31153125, https://doi.org/10.1002/2018GL077051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, https://doi.org/10.1073/pnas.0306738101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, K. M., 2015: Comparison of the recent drought in Texas to the drought of record using reanalysis modeling. Pap. Appl. Geogr., 1, 3442, https://doi.org/10.1080/23754931.2015.1009295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Tebaldi, H. Teng, and T. C. Peterson, 2007: Current and future U.S. weather extremes and El Niño. Geophys. Res. Lett., 34, L20704, https://doi.org/10.1029/2007GL031027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and K. A. Dunne, 2016: Potential evapotranspiration and continental drying. Nat. Climate Change, 6, 946949, https://doi.org/10.1038/nclimate3046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, J. G., 2005: A half century of water resource planning and policy, 1950–2000. Water for Texas, J. Norwine, J. R. Giardino, and S. Krishnamurthy, Eds., Texas A&M University Press, 5–16.

  • Mote, P. W., and Coauthors, 2016: Perspectives on the causes of exceptionally low 2015 snowpack in the western United States. Geophys. Res. Lett., 43, 10 98010 988, https://doi.org/10.1002/2016GL069965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., S. Li, D. P. Lettenmaier, M. Xiao, and R. Engel, 2018: Dramatic declines in snowpack in the western US. npj Climate Atmos. Sci., 1, 2, https://doi.org/10.1038/s41612-018-0012-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nace, R. L., and E. J. Pluhowski, 1965: Drought of the 1950’s with special reference to the midcontinent. Geological Survey Water-Supply Paper 1804, U.S. Government Printing Office, 93 pp., https://pubs.usgs.gov/wsp/1804/report.pdf.

  • Neilson, R. P., 1986: High-resolution climatic analysis and Southwest biogeography. Science, 232, 2734, https://doi.org/10.1126/science.232.4746.27.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J., 2011: The 2011 Texas drought: A briefing packet for the Texas legislature. Office of the State Climatologist, College of Geosciences, Texas A&M University Tech. Rep., 43 pp., https://senate.texas.gov/cmtes/82/c510/0110BI-JohnNielsen-Gammon.pdf.

  • Nigam, S., B. Guan, and A. Ruiz-Barradas, 2011: Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains. Geophys. Res. Lett., 38, L16713, https://doi.org/10.1029/2011GL048650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp., https://doi.org/10.5065/D6RR1W7M.

    • Crossref
    • Export Citation
  • Palmer, W. C., and L. H. Seamon, 1957: Drought in 1956. Weatherwise, 10, 2225, https://doi.org/10.1080/00431672.1957.9926941.

  • Power, S. B., and F. P. D. Delage, 2018: El Niño–Southern Oscillation and associated climatic conditions around the world during the latter half of the twenty-first century. J. Climate, 31, 61896207, https://doi.org/10.1175/JCLI-D-18-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puma, M. J., and B. I. Cook, 2010: Effects of irrigation on global climate during the 20th century. J. Geophys. Res., 115, D16120, https://doi.org/10.1029/2010JD014122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., and G. B. Goodrich, 2008: Nature and causes of the 2002 to 2004 drought in the southwestern United States compared with the historic 1953 to 1957 drought. Climate Res., 36, 4152, https://doi.org/10.3354/cr00735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2014: Scaling potential evapotranspiration with greenhouse warming. J. Climate, 27, 15391558, https://doi.org/10.1175/JCLI-D-13-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, https://doi.org/10.1002/2013MS000265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2018: GPCC full data monthly product version 2018 at 0.25°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. GPCC, accessed 2018, https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_025.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, https://doi.org/10.1175/2009JCLI3060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and Coauthors, 2016: Global meteorological drought: A synthesis of current understanding with a focus on SST drivers of precipitation deficits. J. Climate, 29, 39894019, https://doi.org/10.1175/JCLI-D-15-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., 2007: The turn of the century North American drought: Global context, dynamics, and past analogs. J. Climate, 20, 55275552, https://doi.org/10.1175/2007JCLI1529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and M. Hoerling, 2014: Atmosphere and ocean origins of North American droughts. J. Climate, 27, 45814606, https://doi.org/10.1175/JCLI-D-13-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088, https://doi.org/10.1175/JCLI3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and L. Vogel, 2012: Does global warming cause intensified interannual hydroclimate variability? J. Climate, 25, 33553372, https://doi.org/10.1175/JCLI-D-11-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Ting, C. Li, N. Naik, B. Cook, J. Nakamura, and H. Liu, 2013: Projections of declining surface-water availability for the southwestern United States. Nat. Climate Change, 3, 482486, https://doi.org/10.1038/nclimate1787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2014: Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Climate, 27, 79217948, https://doi.org/10.1175/JCLI-D-14-00153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. Henderson, 2015: Causes of the 2011 to 2014 California drought. J. Climate, 28, 69977024, https://doi.org/10.1175/jcli-d-14-00860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stahle, D. W., and M. K. Cleaveland, 1988: Texas drought history reconstructed and analyzed from 1698 to 1980. J. Climate, 1, 5974, https://doi.org/10.1175/1520-0442(1988)001<0059:TDHRAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. L., 2012: Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett., 39, L17703, https://doi.org/10.1029/2012GL052759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., F. M. Hoffman, C. D. Koven, and J. T. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA, 113, 10 01910 024, https://doi.org/10.1073/pnas.1604581113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swetnam, T. W., and J. L. Betancourt, 1998: Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J. Climate, 11, 31283147, https://doi.org/10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, J., 2015: 1950s drought plagued Texas for seven long years. San Antonio Express-News, https://www.expressnews.com/150years/major-stories/article/1950s-drought-plagued-Texas-for-seven-long-years-6500014.php.

  • Thomas, H. E., 1963: General summary of effects of the drought in the Southwest. Drought in the Southwest, 1942-1956, Geological Survey Paper 372, U.S. Government Printing Office, 33 pp.

    • Crossref
    • Export Citation
  • Ting, M., R. Seager, C. Li, H. Liu, and N. Henderson, 2018: Mechanism of future spring drying in the southwestern United States in CMIP5 models. J. Climate, 31, 42654279, https://doi.org/10.1175/JCLI-D-17-0574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trancoso, R., J. R. Larsen, T. R. McVicar, S. R. Phinn, and C. A. McAlpine, 2017: CO2–vegetation feedbacks and other climate changes implicated in reducing base flow. Geophys. Res. Lett., 44, 23102318, https://doi.org/10.1002/2017gl072759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trugman, A. T., D. Medvigy, J. S. Mankin, and W. R. L. Anderegg, 2018: Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett., 45, 64956503, https://doi.org/10.1029/2018GL078131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turral, H., J. J. Burke, and J.-M. Faurès, 2011: Climate change, water and food security. Food and Agriculture Organization of the United Nations, Water Rep. 36, 200 pp., http://www.fao.org/3/i2096e/i2096e.pdf.

  • Udall, B., and J. Overpeck, 2017: The twenty-first century Colorado River hot drought and implications for the future. Water Resour. Res., 53, 24042418, https://doi.org/10.1002/2016WR019638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ukkola, A. M., I. C. Prentice, T. F. Keenan, A. I. J. M. van Dijk, N. R. Viney, R. B. Myneni, and J. Bi, 2016: Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Climate Change, 6, 7578, https://doi.org/10.1038/nclimate2831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Vuuren, D., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, https://doi.org/10.1007/s10584-011-0148-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, Y., and Coauthors, 2013: Multi-model projections and uncertainties of irrigation water demand under climate change. Geophys. Res. Lett., 40, 46264632, https://doi.org/10.1002/grl.50686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, J. L., J. L. Betancourt, and J. T. Overpeck, 2012: Climatic limits on foliar growth during major droughts in the southwestern USA. J. Geophys. Res., 117, G03031, https://doi.org/10.1029/2012JG001993.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., R. Seager, J. T. Abatzoglou, B. I. Cook, J. E. Smerdon, and E. R. Cook, 2015: Contribution of anthropogenic warming to the 2012–2014 California drought. Geophys. Res. Lett., 42, 68196828, https://doi.org/10.1002/2015GL064924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. P., B. I. Cook, J. E. Smerdon, D. A. Bishop, R. Seager, and J. S. Mankin, 2017: The 2016 southeastern U.S. drought: An extreme departure from centennial wetting and cooling. J. Geophys. Res., 122, 10 88810 905, https://doi.org/10.1002/2017jd027523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. E., 2013: A historical perspective on precipitation, drought severity, and streamflow in Texas during 1951–56 and 2011. Scientific Investigations Rep. 2013–5113, U.S. Department of the Interior, U.S. Geological Survey, 34 pp., https://pubs.usgs.gov/sir/2013/5113/pdf/sir20135113.pdf.

    • Crossref
    • Export Citation
  • Wisser, D., B. M. Fekete, C. J. Vorosmarty, and A. Schumann, 2010: Reconstructing 20th century global hydrography: A contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrol. Earth Syst. Sci., 14, 124, https://doi.org/10.5194/hess-14-1-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodhouse, C. A., and J. T. Overpeck, 1998: 2000 years of drought variability in the central United States. Bull. Amer. Meteor. Soc., 79, 26932714, https://doi.org/10.1175/1520-0477(1998)079<2693:YODVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodhouse, C. A., G. T. Pederson, K. Morino, S. A. McAfee, and G. J. McCabe, 2016: Increasing influence of air temperature on upper Colorado River streamflow. Geophys. Res. Lett., 43, 21742181, https://doi.org/10.1002/2015GL067613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, M., B. Udall, and D. P. Lettenmaier, 2018: On the causes of declining Colorado River streamflows. Water Resour. Res., 54, 67396756, https://doi.org/10.1029/2018WR023153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and Coauthors, 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206, https://doi.org/10.1002/2017RG000568.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1566 291 21
PDF Downloads 1293 207 18