Barrier Effect on MJO Propagation by the Maritime Continent in the MJO Task Force/GEWEX Atmospheric System Study Models

Jian Ling State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jian Ling in
Current site
Google Scholar
PubMed
Close
,
Yuqing Zhao State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yuqing Zhao in
Current site
Google Scholar
PubMed
Close
, and
Guiwan Chen State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China

Search for other papers by Guiwan Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT

The simulated Madden–Julian oscillation (MJO) events in 27 general circulation models (GCMs) are identified using an MJO tracking method. The results suggest that the occurrence frequencies of simulated MJO events can represent a model’s ability to simulate several characteristics of the MJO to a certain extent during boreal winter, such as propagation range, strength, and termination longitude. All tracked MJO events are classified into those that propagate through the Maritime Continent (MC) (MJO-C) and those that do not (MJO-B), and the weakening and blocking effects on MJO propagation by the MC in GCMs were quantified. In general, if a GCM shows a stronger weakening effect on MJO strength over the MC, it tends to produce a stronger blocking effect on MJO propagation over the MC during boreal winter. The barrier effect of the MC on MJO propagation is exaggerated in most GCMs, while it can be underestimated in some GCMs, especially the coupled GCMs. Strong lower-tropospheric premoistening is identified ahead of the MJO convection center when it is over the central MC for MJO-C but not for MJO-B in most GCMs. Such strong premoistening is mainly attributed to the zonal gradient of lower-tropospheric easterly anomalies within the front Walker cell, which could be a precursor leading to the eastward propagation of MJO convection. In contrast to the observation, the role of the background sea surface temperature and land–sea precipitation contrast in the barrier effect on MJO propagation by the MC is not well captured by most GCMs.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (http://www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Ling, lingjian@lasg.iap.ac.cn

ABSTRACT

The simulated Madden–Julian oscillation (MJO) events in 27 general circulation models (GCMs) are identified using an MJO tracking method. The results suggest that the occurrence frequencies of simulated MJO events can represent a model’s ability to simulate several characteristics of the MJO to a certain extent during boreal winter, such as propagation range, strength, and termination longitude. All tracked MJO events are classified into those that propagate through the Maritime Continent (MC) (MJO-C) and those that do not (MJO-B), and the weakening and blocking effects on MJO propagation by the MC in GCMs were quantified. In general, if a GCM shows a stronger weakening effect on MJO strength over the MC, it tends to produce a stronger blocking effect on MJO propagation over the MC during boreal winter. The barrier effect of the MC on MJO propagation is exaggerated in most GCMs, while it can be underestimated in some GCMs, especially the coupled GCMs. Strong lower-tropospheric premoistening is identified ahead of the MJO convection center when it is over the central MC for MJO-C but not for MJO-B in most GCMs. Such strong premoistening is mainly attributed to the zonal gradient of lower-tropospheric easterly anomalies within the front Walker cell, which could be a precursor leading to the eastward propagation of MJO convection. In contrast to the observation, the role of the background sea surface temperature and land–sea precipitation contrast in the barrier effect on MJO propagation by the MC is not well captured by most GCMs.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (http://www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Ling, lingjian@lasg.iap.ac.cn
Save
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., P. A. Harr, and H. J. Chen, 2005: Synoptic disturbances over the equatorial South China Sea and western maritime continent during boreal winter. Mon. Wea. Rev., 133, 489503, https://doi.org/10.1175/MWR-2868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and B. Wang, 2018: Effects of enhanced front Walker cell on the eastward propagation of the MJO. J. Climate, 31, 77197738, https://doi.org/10.1175/JCLI-D-17-0383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., B. E. Mapes, and R. A. Houze Jr., 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, https://doi.org/10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., J. Ling, and C. Y. Li, 2016: Evolution of the Madden−Julian oscillation in two types of El Niño. J. Climate, 29, 19191934, https://doi.org/10.1175/JCLI-D-15-0486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., T. Li, and W. Zhu, 2015: Propagating and nonpropagating MJO events over Maritime Continent. J. Climate, 28, 84308449, https://doi.org/10.1175/JCLI-D-15-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., J. Y. Lee, B. Wang, W. Wang, and F. Vitart, 2013: Intraseasonal forecasting of the Asian summer monsoon in four operational and research models. J. Climate, 26, 41864203, https://doi.org/10.1175/JCLI-D-12-00252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., C. Zhang, Z. Feng, C. D. Burleyson, C. De Mott, B. Kerns, J. J. Benedict, and M. N. Martini, 2016: The impact of the diurnal cycle on the propagation of Madden–Julian oscillation convection across the Maritime Continent. J. Adv. Model. Earth Syst., 8, 15521564, https://doi.org/10.1002/2016MS000725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., and D. G. Golder, 1986: Tropical intraseasonal oscillations appearing in a GFDL general-circulation model and FGGE data. Part I: Phase propagation. J. Atmos. Sci., 43, 30583067, https://doi.org/10.1175/1520-0469(1986)043<3058:TIOAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., B. Liebmann, M. E. Newman, J. D. Glick, and J. E. Schemm, 2000: Medium range forecasts errors associated with active episodes of the Madden–Julian oscillation. Mon. Wea. Rev., 128, 6986, https://doi.org/10.1175/1520-0493(2000)128<0069:MRFEAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirata, F. E., P. J. Webster, and V. E. Toma, 2013: Distinct manifestations of austral summer tropical intraseasonal oscillations. Geophys. Res. Lett., 40, 33373341, https://doi.org/10.1002/grl.50632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and M. Y. Lee, 2005: Topographic effects on the eastward propagation and initiation of the Madden–Julian oscillation. J. Climate, 18, 795809, https://doi.org/10.1175/JCLI-3292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian Oscillation. J. Climate, 25, 49144931, https://doi.org/10.1175/JCLI-D-11-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and Y. Yang, 2016: Contribution of atmospheric internal processes to interannual variability of South Asian summer monsoon. Int. J. Climatol., 36, 29172930, https://doi.org/10.1002/joc.4528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and H. Murakami, 2014: Moisture asymmetry and MJO eastward propagation in an aqua-planet general circulation model. J. Climate, 27, 87478760, https://doi.org/10.1175/JCLI-D-14-00148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, M. P., J. L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, https://doi.org/10.1175/JCLI-D-12-00541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inness, P. M., and J. M. Slingo, 2006: The interaction of the Madden–Julian Oscillation with the Maritime Continent in a GCM. Quart. J. Roy. Meteor. Soc., 132, 16451667, https://doi.org/10.1256/qj.05.102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., M. Zhao, E. D. Maloney, and D. E. Waliser, 2016: Convective moisture adjustment time scale as a key factor in regulating model amplitude of the Madden-Julian Oscillation. Geophys. Res. Lett., 43, 10 41210 419, https://doi.org/10.1002/2016GL070898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13, 35603575, https://doi.org/10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, https://doi.org/10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436, https://doi.org/10.1175/2009JCLI3063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., J. S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, https://doi.org/10.1175/JCLI-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafleur, D. M., B. S. Barrett, and G. R. Henderson, 2015: Some climatological aspects of the Madden–Julian oscillation (MJO). J. Climate, 28, 60396053, https://doi.org/10.1175/JCLI-D-14-00744.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and K.-M. Lau, 1986: Structure and propagation of intraseasonal oscillations appearing in a GFDL GCM. J. Atmos. Sci., 43, 20232047, https://doi.org/10.1175/1520-0469(1986)043<2023:TSAPOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., Z. Long, and Q. Zhang, 2001: Strong/weak summer monsoon activity over the South China Sea and atmospheric intraseasonal oscillation. Adv. Atmos. Sci., 18, 11461160, https://doi.org/10.1007/s00376-001-0029-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., X. Jia, J. Ling, W. Zhou, and C. Zhang, 2009: Sensitivity of MJO simulations to diabatic heating profiles. Climate Dyn., 32, 167187, https://doi.org/10.1007/s00382-008-0455-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., 2014: Recent advance in understanding the dynamics of the Madden–Julian oscillation. J. Meteor. Res., 28, 133, https://doi.org/10.1007/s13351-014-3087-6.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401412, https://doi.org/10.2151/jmsj1965.72.3_401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, https://doi.org/10.1175/JCLI3735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of the sea surface temperature gradients in forcing low-level winds and convergence in the Tropics. J. Atmos. Sci., 44, 24402458, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, and P. Bechtold, 2013: Large-scale distinctions between MJO and non-MJO convective initiation over the tropical Indian Ocean. J. Atmos. Sci., 70, 26962712, https://doi.org/10.1175/JAS-D-13-029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., P. Bauer, P. Bechtold, A. Beljaars, R. Forbes, F. Vitart, M. Ulate, and C. Zhang, 2014: Global versus local MJO forecast skill of the ECMWF model during DYNAMO. Mon. Wea. Rev., 142, 22282247, https://doi.org/10.1175/MWR-D-13-00292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, S. Wang, and C. Li, 2017: A new interpretation of the ability of global models to simulate the MJO. Geophys. Res. Lett., 44, 57985806, https://doi.org/10.1002/2017GL073891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, R. Joyce, P.-P. Xie, and G. Chen, 2019: Possible role of the diurnal cycle in land convection in the barrier effect on the MJO by the Maritime Continent. Geophys. Res. Lett., 46, 30013011, https://doi.org/10.1029/2019GL081962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., L. Zhou, J. Ling, X. Fu, and G. Huang, 2016a: Relationship between SST anomalies and the intensity of intraseasonal variability. Theor. Appl. Climatol., 124, 847854, https://doi.org/10.1007/s00704-015-1458-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., T. Li, H. Wang, L. Deng, and Y. Zhang, 2016b: Modulation of boreal summer intraseasonal oscillation over the western North Pacific by the ENSO. J. Climate, 29, 71897201, https://doi.org/10.1175/JCLI-D-15-0831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., Q. Zhang, C. Zhang, Y. Zhu, M. Khairoutdinov, H. M. Kim, C. Schumacher, and M. Zhang, 2016: A revised real-time multivariate MJO index. Mon. Wea. Rev., 144, 627642, https://doi.org/10.1175/MWR-D-15-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50-day oscillation in zonal wind in tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 43684386, https://doi.org/10.1175/JCLI-3212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. A. Shapiro, G. R. Asrar, and J. Caughey, 2012: Multiscale convective organization and the YOTC virtual global field campaign. Bull. Amer. Meteor. Soc., 93, 11711187, https://doi.org/10.1175/BAMS-D-11-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, https://doi.org/10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petch, J., D. Waliser, X. Jiang, P. K. Xavier, and S. Woolnough, 2011: A global model inter-comparison of the physical processes associated with the MJO. GEWEX News, Vol. 21, No. 3, International GEWEX Project Office, Silver Spring, MD, 3–5.

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K. H., W. Wang, J. Gottschalck, Q. Zhang, J.-K. E. Schemm, W. R. Higgins, and A. Kumar, 2009: Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Climate, 22, 23722388, https://doi.org/10.1175/2008JCLI2421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, J., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325357, https://doi.org/10.1007/BF00231106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., E. D. Maloney, G. Bellon, and M. F. Dargan, 2008: The role of surface heat fluxes in tropical intraseasonal oscillations. Nat. Geosci., 1, 653657, https://doi.org/10.1038/ngeo312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., J. M. Slingo, P. M. Inness, and W. K. M. Lau, 1997: On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Climate Dyn., 13, 769795, https://doi.org/10.1007/s003820050197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and F. Molteni, 2010: Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855, https://doi.org/10.1002/qj.623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350, https://doi.org/10.1175/BAMS-84-1-33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 30063030, https://doi.org/10.1175/2008JCLI2731.1.

  • Waliser, D. E., and Coauthors, 2012: The “year” of tropical convection (May 2008–April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 11891218, https://doi.org/10.1175/2011BAMS3095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Dynamics of coupled moist Kelvin–Rossby waves on an equatorial b-plane. J. Atmos. Sci., 47, 397413, https://doi.org/10.1175/1520-0469(1990)047<0397:DOTCMK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and S. S. Lee, 2017: MJO propagation shaped by zonal asymmetric structures: Results from 24 GCM simulations. J. Climate, 30, 79337952, https://doi.org/10.1175/JCLI-D-16-0873.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, E. Maloney, and B. Wang, 2017: Fundamental causes of propagating and nonpropagating MJOs in MJOTF/GASS models. J. Climate, 30, 37433769, https://doi.org/10.1175/JCLI-D-16-0765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. H. Sobel, 2017: Factors controlling rain on small tropical islands: Diurnal cycle, large-scale wind speed, and topography. J. Atmos. Sci., 74, 35153532, https://doi.org/10.1175/JAS-D-16-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. H. Sobel, M. K. Tippett, and F. Vitart, 2019: Prediction and predictability of tropical intraseasonal convection: Seasonal dependence and the Maritime Continent prediction barrier. Climate Dyn., 52, 60156031, https://doi.org/10.1007/s00382-018-4492-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M. P. Hung, S. Weaver, A. Kumar, and X. Fu, 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 25092520, https://doi.org/10.1007/s00382-013-1806-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., W. Wang, M. Chen, and A. Kumar, 2011: Representation of MJO variability in the NCEP Climate Forecast System. J. Climate, 24, 46764694, https://doi.org/10.1175/2011JCLI4188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and J. McBride, 2005: Australian–Indonesian monsoon. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. Lau and D. Waliser, Eds., Springer, 125–173.

    • Crossref
    • Export Citation
  • Wu, C. H., and H. H. Hsu, 2009: Topographic influence on the MJO in the Maritime Continent. J. Climate, 22, 54335448, https://doi.org/10.1175/2009JCLI2825.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J. Climate, 15, 24292445, https://doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2012: Potential vorticity of the Madden–Julian oscillation. J. Atmos. Sci., 69, 6578, https://doi.org/10.1175/JAS-D-11-081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., M. Dong, S. Gualdi, H. H. Hendon, E. D. Maloney, A. Marshall, K. R. Sperber, and W. Wang, 2006: Simulations of the Madden–Julian Oscillation by four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573592, https://doi.org/10.1007/s00382-006-0148-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C. B., T. Li, and T. J. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307, https://doi.org/10.1175/JCLI-D-12-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4982 3900 1487
PDF Downloads 893 106 7