Response of Southern Ocean Ventilation to Changes in Midlatitude Westerly Winds

Darryn W. Waugh Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland, and School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Darryn W. Waugh in
Current site
Google Scholar
PubMed
Close
,
Andrew McC. Hogg Research School of Earth Sciences, and Australian Research Council Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Andrew McC. Hogg in
Current site
Google Scholar
PubMed
Close
,
Paul Spence Climate Change Research Centre, and Australian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Paul Spence in
Current site
Google Scholar
PubMed
Close
,
Matthew H. England Climate Change Research Centre, and Australian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Matthew H. England in
Current site
Google Scholar
PubMed
Close
, and
Thomas W. N. Haine Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Thomas W. N. Haine in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT

Changes in ventilation of the Southern Hemisphere oceans in response to changes in midlatitude westerly winds are examined by analyzing the ideal age tracer from global eddy-permitting ocean–ice model simulations in which there is an abrupt increase and/or a meridional shift in the winds. The age response in mode and intermediate waters is found to be close to linear; the response of a combined increase and shift of peak winds is similar to the sum of the individual responses to an increase and a shift. Further, a barotropic response, following Sverdrup balance, can explain much of the age response to the changes in wind stress. There are similar peak decreases (of around 50 years) in the ideal age for a 40% increase or 2.5° poleward shift in the wind stress. However, while the age decreases throughout the thermocline for an increase in the winds, for a poleward shift in the winds the age increases in the north part of the thermocline and there are decreases in age only south of 35°S. As a consequence, the change in the volume of young water differs, with a 15% increase in the volume of water with ages younger than 50 years for a 40% increase in the winds but essentially no change in this volume for a 2.5° shift. As ventilation plays a critical role in the uptake of carbon and heat, these results suggest that the storage of anthropogenic carbon and heat in mode and intermediate waters will likely increase with a strengthening of the winds, but will be much less sensitive to a meridional shift in the peak wind stress.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Darryn Waugh, waugh@jhu.edu

ABSTRACT

Changes in ventilation of the Southern Hemisphere oceans in response to changes in midlatitude westerly winds are examined by analyzing the ideal age tracer from global eddy-permitting ocean–ice model simulations in which there is an abrupt increase and/or a meridional shift in the winds. The age response in mode and intermediate waters is found to be close to linear; the response of a combined increase and shift of peak winds is similar to the sum of the individual responses to an increase and a shift. Further, a barotropic response, following Sverdrup balance, can explain much of the age response to the changes in wind stress. There are similar peak decreases (of around 50 years) in the ideal age for a 40% increase or 2.5° poleward shift in the wind stress. However, while the age decreases throughout the thermocline for an increase in the winds, for a poleward shift in the winds the age increases in the north part of the thermocline and there are decreases in age only south of 35°S. As a consequence, the change in the volume of young water differs, with a 15% increase in the volume of water with ages younger than 50 years for a 40% increase in the winds but essentially no change in this volume for a 2.5° shift. As ventilation plays a critical role in the uptake of carbon and heat, these results suggest that the storage of anthropogenic carbon and heat in mode and intermediate waters will likely increase with a strengthening of the winds, but will be much less sensitive to a meridional shift in the peak wind stress.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Darryn Waugh, waugh@jhu.edu
Save
  • Abernathey, R., and D. Ferreira, 2015: Southern Ocean isopycnal mixing and ventilation changes driven by winds. Geophys. Res. Lett., 42, 10 35710 365, https://doi.org/10.1002/2015GL066238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and T. J. Mcdougall, 1994: Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr., 24, 11371152, https://doi.org/10.1175/1520-0485(1994)024<1137:DCCAOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., E. Shuckburgh, J. B. Sallee, Z. Wang, A. J. Meijers, N. Bruneau, T. Phillips, and L. J. Wilcox, 2013: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: Historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos., 118, 547562, https://doi.org/10.1002/jgrd.50153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., G., Danabasoglu, P. R. Gent, and K. Lindsay, 2006: Changes in ocean ventilation during the 21st century in the CCSM3. Ocean Modell., 15, 141156, https://doi.org/10.1016/j.ocemod.2006.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., 2006: Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys. Res. Lett., 33, L03712, https://doi.org/10.1029/2005GL024911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2007: Trends in Southern Hemisphere circulation in IPCC AR4 models over 1950–99: Ozone depletion versus greenhouse forcing. J. Climate, 20, 681693, https://doi.org/10.1175/JCLI4028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, S. Godfrey, and S. Wijffels, 2010: Simulations of processes associated with the fast warming rate of the southern midlatitude ocean. J. Climate, 23, 197206, https://doi.org/10.1175/2009JCLI3081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeVries, T., and F. Primeau, 2011: Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean. J. Phys. Oceanogr., 41, 23812401, https://doi.org/10.1175/JPO-D-10-05011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Orgeville, M., M. H. England, K. J. Meissner, and W. P. Sijp, 2010: On the Southern Hemisphere westerlies control of glacial-interglacial atmospheric CO2 variations. Geophys. Res. Lett., 37, L21703, https://doi.org/10.1029/2010GL045261.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., C. Langlais, J. P. Brook, and P. Spence, 2017: Regional impacts of the westerly winds on Southern Ocean Mode and Intermediate Water subduction. J. Phys. Oceanogr., 47, 25212530, https://doi.org/10.1175/JPO-D-17-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., 1995: The age of water and ventilation timescales in a global ocean model. J. Phys. Oceanogr., 25, 27562777, https://doi.org/10.1175/1520-0485(1995)025<2756:TAOWAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and P. R. Gent, 2011: The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model. Ocean Modell., 39, 135145, https://doi.org/10.1016/j.ocemod.2011.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fine, R. A., S. Peacock, M. E. Maltrud, and F. O. Bryan, 2017: A new look at ocean ventilation time scales and their uncertainties. J. Geophys. Res. Oceans, 122, 37713798, https://doi.org/10.1002/2016JC012529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., S. R. Rintoul, and W. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nat. Climate Change, 8, 5863, https://doi.org/10.1038/s41558-017-0022-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2008: Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Climate, 21, 47494765, https://doi.org/10.1175/2008JCLI2131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., J. L. Russell, and F. Zeng, 2007: How does ocean ventilation change under global warming? Ocean Sci., 3, 4353, https://doi.org/10.5194/os-3-43-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (2012 release with updates). GFDL Ocean Group Tech. Rep. 7, 618 pp.

  • Hall, T. M., and T. W. Haine, 2002: On ocean transport diagnostics: The idealized age tracer and the age spectrum. J. Phys. Oceanogr., 32, 19871991, https://doi.org/10.1175/1520-0485(2002)032<1987:OOTDTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., P. Spence, O. A. Saenko, and S. M. Downes, 2017: The energetics of Southern Ocean upwelling. J. Phys. Oceanogr., 47, 135153, https://doi.org/10.1175/JPO-D-16-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2007: Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316, 17351738, https://doi.org/10.1126/science.1136188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, J. L., K. W. Dixon, A. Gnanadesikan, R. J. Stouffer, and J. R. Toggweiler, 2006: The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. J. Climate, 19, 63826390, https://doi.org/10.1175/JCLI3984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, https://doi.org/10.1126/science.1097403.

  • Saenko, O. A., J. C. Fyfe, and M. H. England, 2005. On the response of the oceanic wind-driven circulation to atmospheric CO2 increase. Climate Dyn., 25, 415426, https://doi.org/10.1007/s00382-005-0032-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., N. Gruber, M. A. Brzezinski, and J. P. Dunne, 2004: High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427, 5660, https://doi.org/10.1038/nature02127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., and M. H. England, 2008: The effect of a northward shift in the southern hemisphere westerlies on the global ocean. Prog. Oceanogr., 79, 119, https://doi.org/10.1016/j.pocean.2008.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S. W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489, https://doi.org/10.1126/science.1155939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, P., S. M. Griffies, M. H. England, A. M. Hogg, O. A. Saenko, and N. C. Jourdain, 2014: Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett., 41, 46014610, https://doi.org/10.1002/2014GL060613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, U., and P. Alpert, 1993: Factor separation in numerical simulations. J. Atmos. Sci., 50, 21072115, https://doi.org/10.1175/1520-0469(1993)050<2107:FSINS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, L16711, https://doi.org/10.1029/2012GL052810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, J. L., D. W. Waugh, and A. Gnanadesikan, 2015: Southern Hemisphere extratropical circulation: Recent trends and natural variability. Geophys. Res. Lett., 42, 55085515, https://doi.org/10.1002/2015GL064521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geosci., 4, 741750, https://doi.org/10.1038/ngeo1296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, Y. H., and M. Holzer, 2017: Decadal changes in Southern Ocean ventilation inferred from deconvolutions of repeat hydrographies. Geophys. Res. Lett., 44, 56555664, https://doi.org/10.1002/2017GL073788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., 2014: Changes in the ventilation of the southern oceans. Philos. Trans. Roy. Soc., 372A, 20130269, https://doi.org/10.1098/rsta.2013.0269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., F. Primeau, T. DeVries, and M. Holzer, 2013: Recent changes in the ventilation of the southern oceans. Science, 339, 568570, https://doi.org/10.1126/science.1225411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525431, https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1124 387 23
PDF Downloads 698 147 0