Summer Climate Change in the Midwest and Great Plains due to Agricultural Development during the Twentieth Century

Catherine A. Nikiel Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Catherine A. Nikiel in
Current site
Google Scholar
PubMed
Close
and
Elfatih A. B. Eltahir Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Elfatih A. B. Eltahir in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Agricultural development is among the most significant forms of land-use change globally. In central North America it has consisted of cropland expansion in the early 1900s, yield intensification starting in the 1930s, and the development of large irrigated areas beginning in the 1950s. The area of this study encompasses the Midwest and Great Plains of the United States not only because significant agricultural change has occurred here but also because of the significant cooling (warming hole) there in the midcentury. This study investigates the relative contribution of agricultural development and greenhouse gas (GHG) emissions on the observed patterns of regional changes in summer temperature, precipitation, and evapotranspiration using a long-term twentieth-century reanalysis dataset (CERA-20C) as boundary conditions for simulations with the MIT Regional Climate Model (MRCM). Temperatures in the Great Plains (33°–43°N, 95°–109°W) and the Midwest (38°–48°N, 82°–109°W) would have been significantly higher in the second half of the twentieth century without the influence of agricultural development, largely due to an increase in evaporative cooling. The simulations of precipitation changes reflect a significant influence of global SST teleconnections at decadal time scales. Numerical simulations also demonstrate the competing effects of cropland expansion and yield intensification on shaping the observed pattern of increases in precipitation. Ultimately, a combination of agricultural development and decadal variability of global sea surface temperatures (SST) explains most of the observed variability of summer temperature and precipitation during the twentieth century over central North America.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0096.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (http://www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Catherine A. Nikiel, nikiel@mit.edu

Abstract

Agricultural development is among the most significant forms of land-use change globally. In central North America it has consisted of cropland expansion in the early 1900s, yield intensification starting in the 1930s, and the development of large irrigated areas beginning in the 1950s. The area of this study encompasses the Midwest and Great Plains of the United States not only because significant agricultural change has occurred here but also because of the significant cooling (warming hole) there in the midcentury. This study investigates the relative contribution of agricultural development and greenhouse gas (GHG) emissions on the observed patterns of regional changes in summer temperature, precipitation, and evapotranspiration using a long-term twentieth-century reanalysis dataset (CERA-20C) as boundary conditions for simulations with the MIT Regional Climate Model (MRCM). Temperatures in the Great Plains (33°–43°N, 95°–109°W) and the Midwest (38°–48°N, 82°–109°W) would have been significantly higher in the second half of the twentieth century without the influence of agricultural development, largely due to an increase in evaporative cooling. The simulations of precipitation changes reflect a significant influence of global SST teleconnections at decadal time scales. Numerical simulations also demonstrate the competing effects of cropland expansion and yield intensification on shaping the observed pattern of increases in precipitation. Ultimately, a combination of agricultural development and decadal variability of global sea surface temperatures (SST) explains most of the observed variability of summer temperature and precipitation during the twentieth century over central North America.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0096.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (http://www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Catherine A. Nikiel, nikiel@mit.edu

Supplementary Materials

    • Supplemental Materials (PDF 4.54 MB)
Save
  • Adegoke, J. O., R. A. Pielke Sr., J. Eastman, R. Mahmood, and K. G. Hubbard, 2003: Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. High Plains. Mon. Wea. Rev., 131, 556564, https://doi.org/10.1175/1520-0493(2003)131<0556:IOIOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfaro, E. J., A. Gershunov, and D. Cayan, 2006: Prediction of summer maximum and minimum temperature over the central and western United States: The roles of soil moisture and sea surface temperature. J. Climate, 19, 14071421, https://doi.org/10.1175/JCLI3665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alter, R. E., Y. Fan, B. R. Lintner, and C. P. Weaver, 2015a: Observational evidence that Great Plains irrigation has enhanced summer precipitation intensity and totals in the Midwestern United States. J. Hydrometeor., 16, 17171735, https://doi.org/10.1175/JHM-D-14-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alter, R. E., E.-S. Im, and E. A. B. Eltahir, 2015b: Rainfall consistently enhanced around the Gezira Scheme in East Africa due to irrigation. Nat. Geosci. Lett., 8, 763767, https://doi.org/10.1038/ngeo2514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alter, R. E., H. C. Douglas, J. M. Winter, and E. A. Eltahir, 2018: Twentieth century regional climate change during the summer in the central United States attributed to agricultural intensification. Geophys. Res. Lett., 45, 15861594, https://doi.org/10.1002/2017GL075604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bandaru, V., T. O. West, D. M. Ricciuto, and R. C. Izaurralde, 2013: Estimating crop net primary production using national inventory data and MODIS-derived parameters. ISPRS J. Photogramm. Remote Sens., 80, 6171, https://doi.org/10.1016/j.isprsjprs.2013.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banerjee, A., L. M. Polvani, and J. C. Fyfe, 2017: The United States “warming hole”: Quantifying the forced aerosol response given large internal variability. Geophys. Res. Lett., 44, 19281937, https://doi.org/10.1002/2016GL071567.

    • Search Google Scholar
    • Export Citation
  • Ben-Ari, T., and D. Makowski, 2014: Decomposing global crop yield variability. Environ. Res. Lett., 9, 114011, https://doi.org/10.1088/1748-9326/9/11/114011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonfils, C., and D. Lobell, 2007: Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl. Acad. Sci. USA, 104, 13 58213 587, https://doi.org/10.1073/pnas.0700144104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. J., and A. T. DeGaetano, 2013: Trends in U.S. surface humidity, 1930–2010. J. Appl. Meteor. Climatol., 52, 147163, https://doi.org/10.1175/JAMC-D-12-035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgman, R. J., and Y. Jang, 2015: Simulated U.S. drought response to interannual and decadal Pacific SST variability. J. Climate, 28, 46884705, https://doi.org/10.1175/JCLI-D-14-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chini, L., G. Hurtt, and S. Frolking, 2014: Harmonized global land use for years 1500–2100, v1. Oak Ridge National Laboratory Distributed Active Archive Center, accessed 23 April 2017, https://doi.org/10.3334/ORNLDAAC/1248.

    • Crossref
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Cook, B. I., R. Seager, and R. L. Miller, 2011: Atmospheric circulation anomalies during two persistent North American droughts: 1932–1939 and 1948–1957. Climate Dyn., 36, 23392355, https://doi.org/10.1007/s00382-010-0807-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv., 1, e1400082, https://doi.org/10.1126/sciadv.1400082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. D. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, https://doi.org/10.1029/2010JD013892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, https://doi.org/10.1038/nclimate1562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., 2009: Influence of modern land cover on the climate of the United States. Climate Dyn., 33, 945958, https://doi.org/10.1007/s00382-009-0566-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., J. S. Pal, R. J. Trapp, and F. Giorgi, 2005: Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl. Acad. Sci. USA, 102, 15 77415 778, https://doi.org/10.1073/pnas.0506042102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. D. King, J. T. Overpeck, L. V. Alexander, I. Durre, and D. J. Karoly, 2016: Extraordinary heat during the 1930s US Dust Bowl and associated large-scale conditions. Climate Dyn., 46, 413426, https://doi.org/10.1007/s00382-015-2590-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, H., 2016: Observational analysis of twentieth century summer climate over North America. Master’s thesis, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 96 pp., http://hdl.handle.net/1721.1/104191.

  • ECMWF, 2017: Reanalysis Datasets: CERA-20C. ECMWF, accessed 31 October 2017, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/cera-20c.

  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, https://doi.org/10.1029/97WR03499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and T. L. Delworth, 2010: Impact of common sea surface temperature anomalies on global drought and pluvial frequency. J. Climate, 23, 485503, https://doi.org/10.1175/2009JCLI3153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gianotti, R. L., and E. A. B. Eltahir, 2014a: Regional climate modeling over the Maritime Continent. Part I: New parameterization for convective cloud fraction. J. Climate, 27, 14881503, https://doi.org/10.1175/JCLI-D-13-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gianotti, R. L., and E. A. B. Eltahir, 2014b: Regional climate modeling over the Maritime Continent. Part II: New parameterization for autoconversion of convective rainfall. J. Climate, 27, 15041523, https://doi.org/10.1175/JCLI-D-13-00171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gianotti, R. L., D. Zhang, and E. A. B. Eltahir, 2012: Assessment of the Regional Climate Model version 3 over the Maritime Continent using different cumulus parameterization and land surface schemes. J. Climate, 25, 638656, https://doi.org/10.1175/JCLI-D-11-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halder, S., S. K. Saha, P. A. Dirmeyer, T. N. Chase, and B. N. Goswami, 2016: Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model. Hydrol. Earth Syst. Sci., 20, 17651784, https://doi.org/10.5194/hess-20-1765-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2012: Modeling the atmospheric response to irrigation in the Great Plains. Part I: General impacts on precipitation and the energy budget. J. Hydrometeor., 13, 16671686, https://doi.org/10.1175/JHM-D-11-098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heckert, N., and J. J. Filliben, 2003: NIST handbook 148: DATAPLOT reference manual, Volume I: Commands. Tech. Rep., National Institute of Standards and Technology Handbook Series, June 2003, https://www.itl.nist.gov/div898/software/dataplot/refman1/homepage.htm.

  • Hicke, J. A., and D. B. Lobell, 2004: Spatiotemporal patterns of cropland area and net primary production in the central United States estimated from USDA agricultural information. Geophys. Res. Lett., 31, L20502, https://doi.org/10.1029/2004GL020927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., S. Feng, and R. J. Oglesby, 2011: Variations in North American summer precipitation driven by the Atlantic multidecadal oscillation. J. Climate, 24, 55555570, https://doi.org/10.1175/2011JCLI4060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, D. B., D. B. Mechem, and N. A. Brunsell, 2014: The effects of Great Plains irrigation on the surface energy balance, regional circulation, and precipitation. Climate, 2, 103128, https://doi.org/10.3390/cli2020103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117161, https://doi.org/10.1007/s10584-011-0153-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, E.-S., and E. A. B. Eltahir, 2014: Enhancement of rainfall and runoff upstream from irrigation location in a climate model of West Africa. Water Resour. Res., 50, 86518674, https://doi.org/10.1002/2014WR015592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, E.-S., M. P. Marcella, and E. A. B. Eltahir, 2014: Impact of potential large-scale irrigation on the West African monsoon and its dependence on location of irrigated area. J. Climate, 27, 9941009, https://doi.org/10.1175/JCLI-D-13-00290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaafar, H. H., and F. A. Ahmad, 2015: Crop yield prediction from remotely sensed vegetation indices and primary productivity in arid and semi-arid lands. Int. J. Remote Sens., 36, 45704589, https://doi.org/10.1080/01431161.2015.1084434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2016: The roles of radiative forcing, sea surface temperatures, and atmospheric and land initial conditions in U.S. summer warming episodes. J. Climate, 29, 41214135, https://doi.org/10.1175/JCLI-D-15-0471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, J., and N. L. Miller, 2011: Regional simulations to quantify land use change and irrigation impacts on hydroclimate in the California Central Valley. Theor. Appl. Climatol., 104, 429442, https://doi.org/10.1007/s00704-010-0352-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., H. Wang, S. D. Schubert, M. J. Suarez, and S. Mahanama, 2009: Drought-induced warming in the continental United States under different SST regimes. J. Climate, 22, 53855400, https://doi.org/10.1175/2009JCLI3075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., M. A. Snyder, and L. C. Sloan, 2007: Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett., 34, L03703, https://doi.org/10.1029/2006GL028679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., X.-Z. Liang, J. Zhu, and Y. Lin, 2006: Can CGCMs simulate the twentieth-century “warming hole” in the central United States? J. Climate, 19, 41374153, https://doi.org/10.1175/JCLI3848.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., 2017: The Climate Data Guide: CERA-20C: ECMWF’s Coupled Ocean-Atmosphere Reanalysis of the 20th Century. Accessed 31 October 2017, https://climatedataguide.ucar.edu/climate-data/cera-20c-ecmwfs-coupled-ocean-atmosphere-reanalysis-20th-century.

  • Li, Z., S. Liu, Z. Tan, N. B. Bliss, C. J. Young, T. O. West, and S. M. Ogle, 2014: Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States. Ecol. Modell., 277, 112, https://doi.org/10.1016/j.ecolmodel.2014.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M. Andreadis, E. P. Maurer, and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, https://doi.org/10.1175/JCLI-D-12-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, M.-H., and J. S. Famiglietti, 2013: Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett., 40, 301306, https://doi.org/10.1002/grl.50108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., C. J. Bonfils, L. M. Kueppers, and M. A. Snyder, 2008: Irrigation cooling effect on temperature and heat index extremes. Geophys. Res. Lett., 35, L09705, https://doi.org/10.1029/2008GL034145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., G. Bala, A. Mirin, T. Phillips, R. Maxwell, and D. Rotman, 2009: Regional differences in the influence of irrigation on climate. J. Climate, 22, 22482255, https://doi.org/10.1175/2008JCLI2703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., K. Harding, and L. Kueppers, 2017: Irrigation effects on land–atmosphere coupling strength in the United States. J. Climate, 30, 36713685, https://doi.org/10.1175/JCLI-D-15-0706.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcella, M. P., 2013: Biosphere–atmosphere interactions over semi-arid regions: Modeling the role of mineral aerosols and irrigation in the regional climate system. Ph.D. dissertation, Massachusetts Institute of Technology, 282 pp., http://hdl.handle.net/1721.1/79490.

  • Marcella, M. P., and E. A. B. Eltahir, 2010: Effects of mineral aerosols on the summertime climate of southwest Asia: Incorporating subgrid variability in a dust emission scheme. J. Geophys. Res., 115, D18203, https://doi.org/10.1029/2010JD014036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcella, M. P., and E. A. B. Eltahir, 2012: Modeling the summertime climate of Southwest Asia: The role of land surface processes in shaping the climate of semiarid regions. J. Climate, 25, 704719, https://doi.org/10.1175/2011JCLI4080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mascioli, N. R., M. Previdi, A. M. Fiore, and M. Ting, 2017: Timing and seasonality of the United States ‘warming hole’. Environ. Res. Lett., 12, 034008, https://doi.org/10.1088/1748-9326/aa5ef4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, R., and G. Wang, 2011: Impact of sea surface temperature and soil moisture on summer precipitation in the United States based on observational data. J. Hydrometeor., 12, 10861099, https://doi.org/10.1175/2011JHM1312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, https://doi.org/10.1007/s10584-011-0156-z. (Data sources, acknowledgments, and further information are available online at http://www.pik-potsdam.de/~mmalte/rcps.)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monfreda, C., N. Ramankutty, and J. A. Foley, 2008: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles, 22, GB1022, https://doi.org/10.1029/2007GB002947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, N. D., E. E. Butler, K. A. McKinnon, A. Rhines, M. Tingley, N. M. Holbrook, and P. Huybers, 2015: Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Climate Change, 6, 317322, https://doi.org/10.1038/nclimate2825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., B. Guan, and A. Ruiz-Barradas, 2011: Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains. Geophys. Res. Lett., 38, L16713, https://doi.org/10.1029/2011GL048650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozdogan, M., M. Rodell, H. K. Beaudoing, and D. L. Toll, 2010: Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J. Hydrometeor., 11, 171184, https://doi.org/10.1175/2009JHM1116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2002: Teleconnections of soil moisture and rainfall during the 1993 Midwest summer flood. Geophys. Res. Lett., 29, 1865, https://doi.org/10.1029/2002GL014815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Z., C. Shi, S. Kumar, and Z. Gao, 2017: North Pacific SST forcing on the central United States “warming hole” as simulated in CMIP5 coupled historical and uncoupled AMIP experiments. Atmos.–Ocean, 55, 5777, https://doi.org/10.1080/07055900.2016.1261690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Partridge, T. F., J. M. Winter, E. C. Osterberg, D. W. Hyndman, A. D. Kendall, and F. J. Magilligan, 2018: Spatially distinct seasonal patterns and forcings of the U.S. warming hole. Geophys. Res. Lett., 45, 20552063, https://doi.org/10.1002/2017GL076463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., and Coauthors, 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change, 2, 828850, https://doi.org/10.1002/wcc.144.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., R. Mahmood, and C. McAlpine, 2016: Land’s complex role in climate change. Phys. Today, 69, 4046, https://doi.org/10.1063/PT.3.3364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prince, S. D., J. Haskett, M. Steininger, H. Strand, and R. Wright, 2001: Net primary production of U.S. Midwest croplands from agricultural harvest yield data. Ecol. Appl., 11, 11941205, https://doi.org/10.1890/1051-0761(2001)011[1194:NPPOUS]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., M. Huang, B. Yang, and L. K. Berg, 2013: A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the southern Great Plains. J. Hydrometeor., 14, 700721, https://doi.org/10.1175/JHM-D-12-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., and J. A. Foley, 1999: Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13, 9971027, https://doi.org/10.1029/1999GB900046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, D. K., N. Ramankutty, N. D. Mueller, P. C. West, and J. A. Foley, 2012: Recent patterns of crop yield growth and stagnation. Nat. Commun., 3, 1293, https://doi.org/10.1038/ncomms2296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxburgh, S. H., S. L. Berry, T. N. Buckley, B. Barnes, and M. L. Roderick, 2005: What is NPP? Inconsistent accounting of respiratory fluxes in the definition of net primary production. Funct. Ecol., 19, 378382, https://doi.org/10.1111/j.1365-2435.2005.00983.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and S. Nigam, 2010: Great Plains precipitation and its SST links in twentieth-century climate simulations, and twenty-first- and twenty-second-century climate projections. J. Climate, 23, 64096429, https://doi.org/10.1175/2010JCLI3173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and T. Bacmeister, 2004: On the cause of the 1930s Dust Bowl. Science, 303, 18551859, https://doi.org/10.1126/science.1095048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, https://doi.org/10.1175/2009JCLI3060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and M. Hoerling, 2014: Atmosphere and ocean origins of North American droughts. J. Climate, 27, 45814606, https://doi.org/10.1175/JCLI-D-13-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, M. Ting, M. Cane, N. Naik, and J. Miller, 2008: Would advance knowledge of 1930s SSTs have allowed prediction of the Dust Bowl drought? J. Climate, 21, 32613281, https://doi.org/10.1175/2007JCLI2134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheskin, D. J., 2007: Handbook of Parametric and Nonparametric Statistical Procedures. 4th ed. Taylor & Francis, 1736 pp.

  • Siebert, S., M. Kummu, M. Porkka, P. Döll, N. Ramankutty, and B. R. Scanlon, 2015: A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci., 19, 15211545, https://doi.org/10.5194/hess-19-1521-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simoes, A., 2016a: Observatory of Economic Complexity: Which countries export corn (2016)? Accessed 8 October 2018, http://atlas.media.mit.edu/en/visualize/tree_map/hs92/export/show/all/1005/2016/.

  • Simoes, A., 2016b: Observatory of Economic Complexity: Which countries export soybeans (2016)? Accessed 8 October 2018, http://atlas.media.mit.edu/en/visualize/tree_map/hs92/export/show/all/1201/2016/.

  • Sterling, S. M., A. Ducharne, and J. Polcher, 2012: The impact of global land-cover change on the terrestrial water cycle. Nat. Climate Change, 3, 385390, https://doi.org/10.1038/nclimate1690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and H. Wang, 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10, 18531873, https://doi.org/10.1175/1520-0442(1997)010<1853:SUSPVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twine, T. E., C. J. Kucharik, and J. A. Foley, 2004: Effects of land cover change on the energy and water balance of the Mississippi River basin. J. Hydrometeor., 5, 640655, https://doi.org/10.1175/1525-7541(2004)005<0640:EOLCCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Census Bureau, 2017: U.S. and World Population Clock. U.S. Census Bureau, https://www.census.gov/popclock/.

  • USDA-NASS, 2016: Quick Stats. U.S. Department of Agriculture National Agricultural Statistics Service (USDA NASS). Accessed 13 July 2017, https://quickstats.nass.usda.gov/.

  • USGCRP, 2018: Impacts, Risks, and Adaptation in the United States. Vol. II, Fourth National Climate Assessment, D. R. Reidmiller et al., Eds., U.S. Global Change Research Program, 1515 pp. https://doi.org/10.7930/NCA4.2018.

    • Crossref
    • Export Citation
  • Wang, H., and S. Schubert, 2014: The precipitation response over the continental United States to cold tropical Pacific sea surface temperatures. J. Climate, 27, 50365055, https://doi.org/10.1175/JCLI-D-13-00453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S. Schubert, M. Suarez, J. Chen, M. Hoerling, A. Kumar, and P. Pegion, 2009: Attribution of the seasonality and regionality in climate trends over the United States during 1950–2000. J. Climate, 22, 25712590, https://doi.org/10.1175/2008JCLI2359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S. Schubert, M. Suarez, and R. Koster, 2010: The physical mechanisms by which the leading patterns of SST variability impact U.S. precipitation. J. Climate, 23, 18151836, https://doi.org/10.1175/2009JCLI3188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., and S. Nigam, 2008: Variability of the Great Plains low-level jet: Large-scale circulation context and hydroclimate impacts. J. Climate, 21, 15321551, https://doi.org/10.1175/2007JCLI1586.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., S. Schubert, and H. Wang, 2009: Warm season variations in the low-level circulation and precipitation over the central United States in observations, AMIP simulations, and idealized SST experiments. J. Climate, 22, 54015420, https://doi.org/10.1175/2009JCLI2984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • West, T. O., and Coauthors, 2010: Cropland carbon fluxes in the United States: Increasing geospatial resolution of inventory-based carbon accounting. Ecol. Appl., 20, 10741086, https://doi.org/10.1890/08-2352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, J. M., 2006: Coupling of Integrated BIosphere Simulator to Regional Climate Model version 3. Master’s thesis, Dept. of Civil and Environmental Engineering, Massachusetts Institute of Technology, 102 pp., http://hdl.handle.net/1721.1/34272.

  • Winter, J. M., and E. A. B. Eltahir, 2012a: Modeling the hydroclimatology of the Midwestern United States. Part 1: Current climate. Climate Dyn., 38, 573593, https://doi.org/10.1007/s00382-011-1182-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, J. M., and E. A. B. Eltahir, 2012b: Modeling the hydroclimatology of the Midwestern United States. Part 2: Future climate. Climate Dyn., 38, 595611, https://doi.org/10.1007/s00382-011-1183-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Z. Gao, Z. Pan, D. Li, and B. Wan, 2016: Record-breaking temperatures in China during the warming and recent hiatus periods. J. Geophys. Res., 121, 241258, https://doi.org/10.1002/2015JD023886.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2475 1187 68
PDF Downloads 1587 580 32