Regional Arctic Amplification by a Fast Atmospheric Response to Anthropogenic Sulfate Aerosol Forcing in China

Minjoong J. Kim Department of Environmental Engineering and Energy, Myongji University, Yongin, South Korea

Search for other papers by Minjoong J. Kim in
Current site
Google Scholar
PubMed
Close
,
Sang-Wook Yeh Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, South Korea

Search for other papers by Sang-Wook Yeh in
Current site
Google Scholar
PubMed
Close
,
Rokjin J. Park School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Rokjin J. Park in
Current site
Google Scholar
PubMed
Close
,
Seok-Woo Son School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Seok-Woo Son in
Current site
Google Scholar
PubMed
Close
,
Byung-Kwon Moon Division of Science Education/Institute of Fusion Science, Chonbuk National University, Jeonju, South Korea

Search for other papers by Byung-Kwon Moon in
Current site
Google Scholar
PubMed
Close
,
Byung-Gon Kim Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University, Gangneung, South Korea

Search for other papers by Byung-Gon Kim in
Current site
Google Scholar
PubMed
Close
,
Jae-Jin Kim Department of Environmental and Atmospheric Sciences, Pukyong National University, Pusan, South Korea

Search for other papers by Jae-Jin Kim in
Current site
Google Scholar
PubMed
Close
, and
Sang-Woo Kim School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Sang-Woo Kim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It is known that an increase of water vapor over the Arctic is one of most plausible causes driving Arctic amplification. However, debate continues with regard to the explanation of the underlying mechanisms driving the increase of moisture over the Arctic region in the observations. Here, we used the Community Atmosphere Model with prescribed sea surface temperature along with reanalysis datasets to examine the role of fast atmospheric responses to the increase of anthropogenic sulfate aerosol concentrations in China. We found that it plays an additive role in moisture transport from the midlatitudes, resulting in warming of the Arctic region, especially around the Barents–Kara Seas. Specifically, sulfate aerosol forcing in China reduces the meridional temperature gradient and leads to the increase of moisture transport into the Arctic by altering atmospheric circulation. The resulting increase of moisture then leads to surface warming through the enhancement of the downwelling longwave radiation. This implies that Arctic warming around the Barents–Kara Seas has been accelerated, at least in part, by a fast atmospheric response to anthropogenic sulfate aerosol emissions in China in the recent past.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0200.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Sang-Wook Yeh, swyeh@hanyang.ac.kr; Rokjin J. Park, rjpark@snu.ac.kr

Abstract

It is known that an increase of water vapor over the Arctic is one of most plausible causes driving Arctic amplification. However, debate continues with regard to the explanation of the underlying mechanisms driving the increase of moisture over the Arctic region in the observations. Here, we used the Community Atmosphere Model with prescribed sea surface temperature along with reanalysis datasets to examine the role of fast atmospheric responses to the increase of anthropogenic sulfate aerosol concentrations in China. We found that it plays an additive role in moisture transport from the midlatitudes, resulting in warming of the Arctic region, especially around the Barents–Kara Seas. Specifically, sulfate aerosol forcing in China reduces the meridional temperature gradient and leads to the increase of moisture transport into the Arctic by altering atmospheric circulation. The resulting increase of moisture then leads to surface warming through the enhancement of the downwelling longwave radiation. This implies that Arctic warming around the Barents–Kara Seas has been accelerated, at least in part, by a fast atmospheric response to anthropogenic sulfate aerosol emissions in China in the recent past.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0200.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Sang-Wook Yeh, swyeh@hanyang.ac.kr; Rokjin J. Park, rjpark@snu.ac.kr

Supplementary Materials

    • Supplemental Materials (PDF 1.10 MB)
Save
  • Acosta Navarro, J. C., and Coauthors, 2016: Amplification of Arctic warming by past air pollution reductions in Europe. Nat. Geosci., 9, 277281, https://doi.org/10.1038/ngeo2673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24, 655666, https://doi.org/10.1007/s00382-005-0018-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arctic Council, 2013: Recommendations to reduce black carbon and methane emissions to slow Arctic climate change. Arctic Council Task Force on Short-Lived Climate Forcers Rep., 20 pp., https://oaarchive.arctic-council.org/bitstream/handle/11374/80/MM08_ACTF_SLCFsFinalSummaryReport_English_5-13-2013%20%283%29.pdf?sequence=1&isAllowed=y.

  • Bader, J., 2014: Climate science: The origin of regional Arctic warming. Nature, 509, 167168, https://doi.org/10.1038/509167a.

  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, https://doi.org/10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Bolin, B., and B. R. Doos, 1986: The Greenhouse Effect, Climate Change and Ecosystems. John Wiley and Sons, 574 pp.

  • Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy, and S. G. Warren, 1991: Perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus, 43A, 152163, https://doi.org/10.1034/j.1600-0870.1991.00013.x.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation systems. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, https://doi.org/10.1038/nature13260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and Coauthors, 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Climate Change, 7, 289295, https://doi.org/10.1038/nclimate3241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and C. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787789, https://doi.org/10.1038/nature04636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. Feldstein, and S. Lee, 2017: The role of downward infrared radiation in the recent Arctic winter warming trend. J. Climate, 30, 49374949, https://doi.org/10.1175/JCLI-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., 2006: Do changes in the midlatitude circulation have any impact on the Arctic surface air temperature trend? J. Climate, 19, 54225438, https://doi.org/10.1175/JCLI3906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629643, https://doi.org/10.1007/s00382-009-0535-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 5356, https://doi.org/10.1038/nature06502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324

    • Crossref
    • Export Citation
  • Jeong, J. I., and R. J. Park, 2013: Effects of the meteorological variability on regional air quality in East Asia. Atmos. Environ., 69, 4655, https://doi.org/10.1016/j.atmosenv.2012.11.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasoar, M. A., A. Voulgarakis, J.-F. Lamarque, D. T. Shindell, N. Bellouin, W. J. Collins, G. Faluvegi, and K. Tsigaridis, 2016: Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models. Atmos. Chem. Phys., 16, 97859804, https://doi.org/10.5194/acp-16-9785-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M. J., S.-W. Yeh, and R. J. Park, 2016: Effect of sulfate aerosol on East Asian summer monsoon. Geophys. Res. Lett., 43, 13641372, https://doi.org/10.1002/2015GL067124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M.-K., W. K. M. Lau, K.-M. Kim, and W.-S. Lee, 2007: A GCM study of effects of radiative forcing of sulfate aerosol on large scale circulation and rainfall in East Asia during boreal spring. Geophys. Res. Lett., 34, L24701, https://doi.org/10.1029/2007GL031683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, https://doi.org/10.5194/acp-10-7017-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H.-J., M. Kwon, S.-W. Yeh, J.-H. Park, Y.-H. Kim, Y.-O. Kwon, and M. A. Alexander, 2017: Impact of poleward moisture transport from the North Pacific on the acceleration of sea ice loss in the Arctic since 2002. J. Climate, 30, 67576769, https://doi.org/10.1175/JCLI-D-16-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, S. B. Feldstein, J. A. Screen, and I. Simmonds, 2017: Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: Downward infrared radiation dominates the surface fluxes. Geophys. Res. Lett., 44, 10 65410 661, https://doi.org/10.1002/2017GL075375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., and Coauthors, 2018: A PDRMIP multimodel study on the impacts of regional aerosol forcings on global and regional precipitation. J. Climate, 31, 44294447, https://doi.org/10.1175/JCLI-D-17-0439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709735, https://doi.org/10.5194/gmd-5-709-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, B., D. Luo, L. Wu, L. Zhong, and I. Simmonds, 2017: Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environ. Res. Lett., 12, 054017, https://doi.org/10.1088/1748-9326/aa69d0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., M. Yoshioka, W. D. Collins, A. J. Conley, D. W. Fillmore, and D. B. Coleman, 2006: Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophys. Res. Lett., 33, L20705, https://doi.org/10.1029/2006GL026126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, M. J., and Coauthors, 2016: Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1 (WACCM). J. Geophys. Res., 121, 23322348, https://doi.org/10.1002/2015JD024290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, and G. Chen, 2011: A model investigation of aerosol-induced changes in boreal winter extratropical circulation. J. Climate, 24, 60776091, https://doi.org/10.1175/2011JCLI4111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Ohara, T., H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, and T. Hayasaka, 2007: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos. Chem. Phys., 7, 44194444, https://doi.org/10.5194/acp-7-4419-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-S., S. Lee, Y. Kosaka, S.-W. Son, and S.-W. Kim, 2015: The impact of Arctic winter infrared radiation on early summer sea ice. J. Climate, 28, 62816296, https://doi.org/10.1175/JCLI-D-14-00773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodhe, H., 1990: A comparison of the contribution of various gases to the greenhouse effect. Science, 248, 12171219, https://doi.org/10.1126/science.248.4960.1217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and B. J. Hoskins, 1990: An easy method for estimation of Q-vectors from weather maps. Wea. Forecasting, 5, 346353, https://doi.org/10.1175/1520-0434(1990)005<0346:AEMFEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweiger, A., R. Lindsay, S. Vavrus, and J. Francis, 2008: Relationships between Arctic sea ice and clouds during autumn. J. Climate, 21, 47994810, https://doi.org/10.1175/2008JCLI2156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Streets, D., and Coauthors, 2003: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 108, 8809, https://doi.org/10.1029/2002JD003093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., J. Huang, M. Ji, and K. Higuchi, 2008: Variability of East Asia dust events and their long-term trend. Atmos. Environ., 42, 31563165, https://doi.org/10.1016/j.atmosenv.2007.07.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, https://doi.org/10.1175/JCLI-D-15-0773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y. F., R. J. Zhang, C. B. Fu, and Z. T. Gao, 2011: variability of blowing dust weather frequency over semi-arid areas of China (Baicheng, Jilin Province) and relationships with climatic factors during 1951–2006. Terr. Atmos. Ocean. Sci., 22, 315324, https://doi.org/10.3319/TAO.2010.09.15.01(A).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., X. Yuan, and M. Ting, 2016: Dynamical link between the Barents–Kara sea ice and the Arctic Oscillation. J. Climate, 29, 51035122, https://doi.org/10.1175/JCLI-D-15-0669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., W.-M. Kim, Y.-H. Kim, B.-K. Moon, R. J. Park, and C.-K. Song, 2013: Changes in the variability of the North Pacific sea surface temperature caused by direct sulfate aerosol forcing in China in a coupled general circulation model. J. Geophys. Res. Atmos., 118, 12611270, https://doi.org/10.1029/2012JD017947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J. So, J.-W. Lee, M. J. Kim, J. I. Jeong, and R. J. Park, 2017: Contributions of Asian pollution and SST forcings on precipitation change in the North Pacific. Atmos. Res., 192, 3037, https://doi.org/10.1016/j.atmosres.2017.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshioka, M., N. M. Mahowald, A. J. Conley, W. D. Collins, D. W. Fillmore, C. S. Zender, and D. B. Coleman, 2007: Impact of desert dust radiative forcing on Sahel precipitation: Relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J. Climate, 20, 14451467, https://doi.org/10.1175/JCLI4056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, X., H. Liao, H. J. Wang, S. L. Li, and J. P. Tang, 2011: Role of sea surface temperature responses in simulation of the climatic effect of mineral dust aerosol. Atmos. Chem. Phys., 11, 60496062, https://doi.org/10.5194/acp-11-6049-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C., B. Wang, and W. Qian, 2008: Why do dust storms decrease in northern China concurrently with the recent global warming? Geophys. Res. Lett., 35, L18702, https://doi.org/10.1029/2008GL034886.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 449 114 14
PDF Downloads 440 95 15