Culprit of the Eastern Pacific Double-ITCZ Bias in the NCAR CESM1.2

Xiaoliang Song Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Xiaoliang Song in
Current site
Google Scholar
PubMed
Close
and
Guang J. Zhang Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Guang J. Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The eastern Pacific double-ITCZ bias has long been attributed to the warm bias of SST in the southeastern Pacific and associated local air–sea interaction. In this study, we conducted two simulations using the NCAR CESM1.2.1 to demonstrate that significant double-ITCZ bias can still form in the eastern Pacific through air–sea coupled feedback even when there is cold SST bias in the southeastern Pacific, indicating that other nonlocal culprits and mechanisms should be responsible for the double-ITCZ bias in the eastern Pacific. Further analyses show that the oversimulated convection in the northern ITCZ region and Central America in boreal winter may result in biases in the surface wind fields in the tropical northeastern Pacific in the atmospheric model, which favor the cooling of the ocean mixed layer through enhancement of latent heat flux and Ekman upwelling. These biases are passed into the ocean model in coupled simulations and result in a severe cold bias of SST in the northern ITCZ region. The overly cold SST bias persists in the subsequent spring, leading to the suppression of convection in the northern ITCZ region. The enhanced low-level cross-equatorial northerly wind strengthens the wind convergence south of the equator and transports abundant water vapor to the convergence zone, strengthening the southern ITCZ convection. All these processes lead to the disappearance of the northern ITCZ and the enhancement of the southern ITCZ in boreal spring, forming a seasonally alternating double-ITCZ bias. This study suggests that convection biases in the northern ITCZ region and Central America in boreal winter may be a culprit for the double-ITCZ bias in the eastern Pacific.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoliang Song, xisong@ucsd.edu

Abstract

The eastern Pacific double-ITCZ bias has long been attributed to the warm bias of SST in the southeastern Pacific and associated local air–sea interaction. In this study, we conducted two simulations using the NCAR CESM1.2.1 to demonstrate that significant double-ITCZ bias can still form in the eastern Pacific through air–sea coupled feedback even when there is cold SST bias in the southeastern Pacific, indicating that other nonlocal culprits and mechanisms should be responsible for the double-ITCZ bias in the eastern Pacific. Further analyses show that the oversimulated convection in the northern ITCZ region and Central America in boreal winter may result in biases in the surface wind fields in the tropical northeastern Pacific in the atmospheric model, which favor the cooling of the ocean mixed layer through enhancement of latent heat flux and Ekman upwelling. These biases are passed into the ocean model in coupled simulations and result in a severe cold bias of SST in the northern ITCZ region. The overly cold SST bias persists in the subsequent spring, leading to the suppression of convection in the northern ITCZ region. The enhanced low-level cross-equatorial northerly wind strengthens the wind convergence south of the equator and transports abundant water vapor to the convergence zone, strengthening the southern ITCZ convection. All these processes lead to the disappearance of the northern ITCZ and the enhancement of the southern ITCZ in boreal spring, forming a seasonally alternating double-ITCZ bias. This study suggests that convection biases in the northern ITCZ region and Central America in boreal winter may be a culprit for the double-ITCZ bias in the eastern Pacific.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoliang Song, xisong@ucsd.edu
Save
  • Adam, O., T. Schneider, and F. Brient, 2018: Regional and seasonal variations of the double-ITCZ bias in CMIP5 models. Climate Dyn., 51, 101117, https://doi.org/10.1007/s00382-017-3909-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 10131021, https://doi.org/10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, F., R. Yu, X. Zhang, Y. Yu, and J. Li, 2003: The impact of low-level cloud over the eastern subtropical Pacific on the “double ITCZ” in LASG FGCM-0. Adv. Atmos. Sci., 20, 461474, https://doi.org/10.1007/BF02690804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and S.-P. Xie, 2008: The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models. J. Climate, 21, 25732590, https://doi.org/10.1175/2007JCLI1975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, M., A. Leetmaa, and J. Derber, 1995: An ocean analysis system for seasonal to interannual climate studies. Mon. Wea. Rev., 123, 460481, https://doi.org/10.1175/1520-0493(1995)123<0460:AOASFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-H. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, https://doi.org/10.1175/JCLI4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., W. Lin, and M. Zhang, 2010: Heat budget of the upper ocean in the south-central equatorial Pacific. J. Climate, 23, 17791792, https://doi.org/10.1175/2009JCLI3135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., M. Zhang, and W. Lin, 2012: An investigation of the initial development of the double-ITCZ warm SST biases in the CCSM. J. Climate, 25, 140155, https://doi.org/10.1175/2011JCLI4001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, C. C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9, 16351645, https://doi.org/10.1175/1520-0442(1996)009<1635:PSCATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838, https://doi.org/10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisan, J. R., and P. P. Niiler, 1998: The seasonal heat budget of the North Pacific: Net heat flux and heat storage rates (1950–1990). J. Phys. Oceanogr., 28, 401421, https://doi.org/10.1175/1520-0485(1998)028<0401:TSHBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oueslati, B., and G. Bellon, 2015: The double ITCZ bias in CMIP5 models: Interaction between SST, large-scale circulation and precipitation. Climate Dyn., 44, 585607, https://doi.org/10.1007/s00382-015-2468-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., D. Gu, D. Halpern, G. Lambert, N.-C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972, https://doi.org/10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. P. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No.110, ECMWF, Reading, United Kingdom, 25–35.

  • Song, F., and G. Zhang, 2016: Effects of southeastern Pacific sea surface temperature on the double-ITCZ bias in NCAR CESM1. J. Climate, 29, 74177433, https://doi.org/10.1175/JCLI-D-15-0852.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., and G. J. Zhang, 2009: Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part I: Climatology and atmospheric feedback. J. Climate, 22, 42994315, https://doi.org/10.1175/2009JCLI2642.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., and G. J. Zhang, 2018: The roles of convection parameterization in the formation of double ITCZ syndrome in the NCAR CESM: I. Atmospheric processes. J. Adv. Model. Earth Syst., 10, 842866, https://doi.org/10.1002/2017MS001191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and D. S. Battisti, 2007a: Processes controlling the mean tropical Pacific precipitation pattern. Part I: The Andes and the eastern Pacific ITCZ. J. Climate, 20, 34343451, https://doi.org/10.1175/JCLI4198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and D. S. Battisti, 2007b: Processes controlling the mean tropical Pacific precipitation pattern. Part II: The SPCZ and the southeast Pacific dry zone. J. Climate, 20, 56965706, https://doi.org/10.1175/2007JCLI1656.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and R. C. Somerville, 1994: Preferred latitudes of the intertropical convergence zone. J. Atmos. Sci., 51, 16191639, https://doi.org/10.1175/1520-0469(1994)051<1619:PLOTIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., N. E. Graham, and C. Gautier, 1993: Comparison of the highly reflective cloud and outgoing longwave datasets for use in estimating tropical deep convection. J. Climate, 6, 331353, https://doi.org/10.1175/1520-0442(1993)006<0331:COTHRC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., W. Lee, Y. Chen, and H. Hsu, 2015: Processes leading to double intertropical convergence zone bias in CESM1/CAM5. J. Climate, 28, 29002915, https://doi.org/10.1175/JCLI-D-14-00622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. J. McPhaden, 1999: The surface-layer heat balance in the equatorial Pacific Ocean. Part I: Mean seasonal cycle. J. Phys. Oceanogr., 29, 18121831, https://doi.org/10.1175/1520-0485(1999)029<1812:TSLHBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J., and C. Mechoso, 1999: Links between annual variations of Peruvian stratocumulus clouds and of SST in the eastern equatorial Pacific. J. Climate, 12, 33053318, https://doi.org/10.1175/1520-0442(1999)012<3305:LBAVOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1993: Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. J. Climate, 6, 18981913, https://doi.org/10.1175/1520-0442(1993)006<1898:LSVOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2001: Double ITCZs. J. Geophys. Res., 106, 11 78511 792, https://doi.org/10.1029/2001JD900046.

  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and X. Song, 2010: Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part II: Coupled feedback and the role of ocean heat transport. J. Climate, 23, 800812, https://doi.org/10.1175/2009JCLI3109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., W. Lin, and M. Zhang, 2007: Toward understanding the double Intertropical Convergence Zone pathology in coupled ocean–atmosphere general circulation models. J. Geophys. Res., 112, D12102, https://doi.org/10.1029/2006JD007878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., H. Liu, and M. Zhang, 2015: Double ITCZ in coupled ocean–atmosphere models: From CMIP3 to CMIP5. Geophys. Res. Lett., 42, 86518659, https://doi.org/10.1002/2015GL065973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., T. Shinoda, J.-L. Lin, and G. N. Kiladis, 2011: Sea surface temperature biases under the stratus cloud deck in the southeast Pacific Ocean in 19 IPCC AR4 coupled general circulation models. J. Climate, 24, 41394164, https://doi.org/10.1175/2011JCLI4172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 348 86 6
PDF Downloads 363 83 6