Projected Slowdown of Antarctic Bottom Water Formation in Response to Amplified Meltwater Contributions

Véronique Lago Climate Change Research Centre, and Australian Research Council Centre of Excellence for Climate System Science, University of New South Wales, New South Wales, Australia

Search for other papers by Véronique Lago in
Current site
Google Scholar
PubMed
Close
and
Matthew H. England Climate Change Research Centre, and Australian Research Council Centre of Excellence for Climate System Science, University of New South Wales, New South Wales, Australia

Search for other papers by Matthew H. England in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The sinking and recirculation of Antarctic Bottom Water (AABW) are a major regulator of the storage of heat, carbon, and nutrients in the ocean. This sinking is sensitive to changes in surface buoyancy, in particular because of freshening since salinity plays a greater role in determining density at cold temperatures. Acceleration in Antarctic ice-shelf and land-ice melt could thus significantly impact the ventilation of the world’s oceans, yet future projections do not usually include this effect in models. Here we use an ocean–sea ice model to investigate the potential long-term impact of Antarctic meltwater on ocean circulation and heat storage. The freshwater forcing is derived from present-day estimates of meltwater input from drifting icebergs and basal melt, combined with RCP2.6, RCP4.5, and RCP8.5 scenarios of projected amplification of Antarctic meltwater. We find that the additional freshwater induces a substantial slowdown in the formation rate of AABW, reducing ventilation of the abyssal ocean. Under both the RCP4.5 and RCP8.5 meltwater scenarios, there is a near-complete shutdown of AABW formation within just 50 years, something that is not captured by climate model projections. The abyssal overturning at ~30°S also weakens, with an ~20-yr delay relative to the onset of AABW slowdown. After 200 years, up to ~50% of the original volume of AABW has disappeared as a result of abyssal warming, induced by vertical mixing in the absence of AABW ventilation. This result suggests that climate change could induce the disappearance of present-day abyssal water masses, with implications for the global distribution of heat, carbon, and nutrients.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (http://www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Véronique Lago, v.lago@unsw.edu.au

Abstract

The sinking and recirculation of Antarctic Bottom Water (AABW) are a major regulator of the storage of heat, carbon, and nutrients in the ocean. This sinking is sensitive to changes in surface buoyancy, in particular because of freshening since salinity plays a greater role in determining density at cold temperatures. Acceleration in Antarctic ice-shelf and land-ice melt could thus significantly impact the ventilation of the world’s oceans, yet future projections do not usually include this effect in models. Here we use an ocean–sea ice model to investigate the potential long-term impact of Antarctic meltwater on ocean circulation and heat storage. The freshwater forcing is derived from present-day estimates of meltwater input from drifting icebergs and basal melt, combined with RCP2.6, RCP4.5, and RCP8.5 scenarios of projected amplification of Antarctic meltwater. We find that the additional freshwater induces a substantial slowdown in the formation rate of AABW, reducing ventilation of the abyssal ocean. Under both the RCP4.5 and RCP8.5 meltwater scenarios, there is a near-complete shutdown of AABW formation within just 50 years, something that is not captured by climate model projections. The abyssal overturning at ~30°S also weakens, with an ~20-yr delay relative to the onset of AABW slowdown. After 200 years, up to ~50% of the original volume of AABW has disappeared as a result of abyssal warming, induced by vertical mixing in the absence of AABW ventilation. This result suggests that climate change could induce the disappearance of present-day abyssal water masses, with implications for the global distribution of heat, carbon, and nutrients.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (http://www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Véronique Lago, v.lago@unsw.edu.au
Save
  • Agosta, C., X. Fettweis, and R. Datta, 2015: Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance. Cryosphere, 9, 23112321, https://doi.org/10.5194/tc-9-2311-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azaneu, M., K. Rodrigo, M. M. Mata, and C. A. E. Garcia, 2013: Trends in the deep Southern Ocean (1958–2010): Implications for Antarctic Bottom Water properties and volume export. J. Geophys. Res. Oceans, 118, 42134227, https://doi.org/10.1002/jgrc.20303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27, 581591, https://doi.org/10.1175/1520-0485(1997)027<0581:AMFIRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: ACCESS-OM: The ocean and sea ice core of the ACCESS coupled model. Aust. Meteor. Oceanogr. J., 63, 213232, https://doi.org/10.22499/2.6301.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brambilla, E., L. D. Talley, and P. E. Robbins, 2008: Subpolar Mode Water in the northeastern Atlantic: 2. Origin and transformation. J. Geophys. Res., 113, C04026, https://doi.org/10.1029/2006jc004063.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1998: Paleocean circulation during the Last Deglaciation: A bipolar seesaw? Paleoceanography, 13, 119121, https://doi.org/10.1029/97PA03707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bronselaer, B., M. Winton, S. M. Griffies, W. J. Hurlin, K. B. Rodgers, O. V. Sergienko, R. J. Stouffer, and J. L. Russell, 2018: Change in future climate due to Antarctic meltwater. Nature, 564, 5358, https://doi.org/10.1038/s41586-018-0712-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Condron, A., and P. Winsor, 2011: A subtropical fate awaited freshwater discharged from glacial Lake Agassiz. Geophys. Res. Lett., 38, L03705, https://doi.org/10.1029/2010GL046011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., J. B. Palter, E. D. Galbraith, R. Bernardello, and I. Marinov, 2014: Cessation of the deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Climate Change, 4, 278282, https://doi.org/10.1038/nclimate2132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeConto, R. M., and D. Pollard, 2016: Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597, https://doi.org/10.1038/nature17145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Depoorter, M. A., J. L. Bamber, J. A. Griggs, J. T. M. Lenaerts, S. R. M. Ligtenberg, M. R. van den Broeke, and G. Moholdt, 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 8992, https://doi.org/10.1038/nature12567; Corrigendum, 502, 580, https://doi.org/10.1038/nature12737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downes, S. M., and A. McC. Hogg, 2013: Southern Ocean circulation and eddy compensation in CMIP5 models. J. Climate, 26, 71987220, https://doi.org/10.1175/JCLI-D-12-00504.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fichefet, T., C. Poncin, H. Goosse, P. Huybrechts, I. Janssens, and H. Le Treut, 2003: Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophys. Res. Lett., 30, 1911, https://doi.org/10.1029/2003GL017826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, https://doi.org/10.1016/j.ocemod.2010.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golledge, N. R., D. E. Kowalewski, T. R. Naish, R. H. Levy, C. J. Fogwill, and E. G. W. Gasson, 2015: The multi-millennial Antarctic commitment to future sea-level rise. Nature, 526, 421425, https://doi.org/10.1038/nature15706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1971: Oceanography of Antarctic waters. Antarctic Oceanology I, J. L. Reid, Ed., Vol. 15, Antarctic research series, Amer. Geophys. Union, 169–203.

    • Crossref
    • Export Citation
  • Gordon, A. L., 2001: Bottom water formation. Encyclopedia of Ocean Sciences, J. H. Steele, K. K. Turekian, and S. A. Thorpe, Eds., Academic Press, 334–340, https://doi.org/10.1006/rwos.2001.0006.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2009: Elements of MOM4p1. NOAA/Geophysical Fluid Dynamics Laboratory Ocean Group Tech. Rep. 6, 444 pp., https://www.gfdl.noaa.gov/wp-content/uploads/files/model_development/ocean/guide4p1.pdf.

  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heuzé, C., K. J. Heywood, D. P. Stevens, and J. K. Ridley, 2015: Changes in global ocean bottom properties and volume transports in CMIP5 models under climate change scenarios. J. Climate, 28, 29172944, https://doi.org/10.1175/JCLI-D-14-00381.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofmann, M., and S. Rahmstorf, 2009: On the stability of the Atlantic meridional overturning circulation. Proc. Natl. Acad. Sci. USA, 49, 20 58420 589, https://doi.org/10.1073/pnas.0909146106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hundsdorfer, W., and R. A. Trompert, 1994: Method of lines and direct discretisation: A comparison for linear advection. Appl. Numer. Math., 13, 469490, https://doi.org/10.1016/0168-9274(94)90009-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449, https://doi.org/10.1175/2010JCLI3997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., S. G. Purkey, and J. M. Toole, 2008: Reduced Antarctic meridional overturning circulation reaches the North Atlantic Ocean. J. Geophys. Res., 35, L22601, https://doi.org/10.1029/2008gl035619.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. Stainforth, D. J. Webb, and S. M. Paterson, 1991: The development of a free-surface Bryan–Cox–Semtner ocean mode. J. Phys. Oceanogr., 21, 13331348, https://doi.org/10.1175/1520-0485(1991)021<1333:TDOAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kouketsu, S., and Coauthors, 2011: Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J. Geophys. Res., 116, C03012, https://doi.org/10.1029/2010JC006464.

    • Search Google Scholar
    • Export Citation
  • Lago, V., S. E. Wijffels, P. J. Durack, J. A. Church, N. L. Bindoff, and S. J. Marsland, 2016: Simulating the role of surface forcing on observed multidecadal upper ocean salinity changes. J. Climate, 29, 55755588, https://doi.org/10.1175/JCLI-D-15-0519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea ice models: The data sets and climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp., https://doi.org/10.5065/D6KK98Q6.

    • Crossref
    • Export Citation
  • Large, W. G., and S. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H.-C., A. Rosati, and M. Spelman, 2006: Barotropic tidal mixing effects in a coupled climate model: Oceanic conditions in the northern Atlantic. Ocean Modell., 11, 464477, https://doi.org/10.1016/j.ocemod.2005.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., and J.-O. Wolff, 2001: On the sensitivity of Southern Ocean sea ice to the surface freshwater flux: A model study. J. Geophys. Res., 106, 27232741, https://doi.org/10.1029/2000JC900086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathiot, P., A. Jenkins, C. Harris, and G. Madec, 2017: Explicit representation and parameterised impacts of under ice shelf seas in the z* coordinate ocean model NEMO 3.6. Geosci. Model Dev., 10, 28492874, https://doi.org/10.5194/gmd-10-2849-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merino, N., J. Le Sommer, G. Durand, N. C. Jourdain, G. Madec, P. Mathiot, and J. Tournadre, 2016: Antarctic icebergs melt over the Southern Ocean: Climatology and impact on sea ice. Ocean Modell., 104, 99110, https://doi.org/10.1016/j.ocemod.2016.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., M. H. England, and A. McC. Hogg, 2015: Response of Southern Ocean convection and abyssal overturning to surface buoyancy perturbations. J. Climate, 28, 42634278, https://doi.org/10.1175/JCLI-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., J. C. Johnson, and J. L. Bullister, 1999: Circulation, mixing, and the production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55109, https://doi.org/10.1016/S0079-6611(99)00004-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purich, A., M. H. England, W. Cai, A. Sullivan, and P. Durack, 2018: Impacts of broad-scale surface freshening of the Southern Ocean in a coupled climate model. J. Climate, 31, 26132632, https://doi.org/10.1175/JCLI-D-17-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, https://doi.org/10.1175/2010JCLI3682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2012: Global contraction of Antarctic Bottom Water between the 1980s and the 2000s. J. Climate, 25, 58305844, https://doi.org/10.1175/JCLI-D-11-00612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1995: Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 378, 145149, https://doi.org/10.1038/378145a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2000: The thermohaline ocean circulation—A system with dangerous thresholds? Climatic Change, 47, 247256, https://doi.org/10.1023/A:1005648404783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and Coauthors, 2005: Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett., 32, L23605, https://doi.org/10.1029/2005GL023655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritz, C., T. L. Edwards, G. Durand, A. J. Payne, V. Peyaud, and R. C. A. Hindmarsh, 2015: Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature, 528, 115118, https://doi.org/10.1038/nature16147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., T. M. C. Hughes, R. J. Stouffer, and S. Manabe, 1998: Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393, 245249, https://doi.org/10.1038/30455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2004: Evaluation of interior circulation in a high-resolution global ocean model. Part I: Deep and bottom waters. J. Phys. Oceanogr., 34, 25922614, https://doi.org/10.1175/JPO2651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. S. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, https://doi.org/10.1016/S1463-5003(03)00011-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, J. P., M. Eby, and A. J. Weaver, 2008: The sensitivity of the Atlantic meridional overturning circulation to freshwater forcing at eddy-permitting resolutions. J. Climate, 21, 26972710, https://doi.org/10.1175/2007JCLI2103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, J. P., O. A. Saenko, W. P. Sijp, and M. H. England, 2013: North Atlantic climate response to Lake Agassiz drainage at coarse and ocean eddy-permitting resolutions. J. Climate, 26, 26512667, https://doi.org/10.1175/JCLI-D-11-00683.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and S. J. Johnsen, 2003: A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18, 1087, https://doi.org/10.1029/2003PA000920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., D. G. Wright, and W. S. Broecker, 1992: The influence of high-latitude surface forcing on the global thermohaline circulation. Paleoceanography, 7, 529541, https://doi.org/10.1029/92PA01695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, https://doi.org/10.1175/JCLI3689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sweby, P., 1984: High-resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal., 21, 9951011, https://doi.org/10.1137/0721062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swindedouw, D., and Coauthors, 2013: Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Climate Dyn., 41, 695720, https://doi.org/10.1007/s00382-012-1479-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Wijk, E. M., and S. R. Rintoul, 2014: Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin. Geophys. Res. Lett., 41, 16571664, https://doi.org/10.1002/2013GL058921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, https://doi.org/10.1038/nclimate2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanowski, H., R. Hallberg, and J. L. Sarmiento, 2015: Abyssal ocean warming and salinification after Weddell polynyas in the GFDL CM2G coupled climate model. J. Phys. Oceanogr., 45, 27552772, https://doi.org/10.1175/JPO-D-15-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1734 590 67
PDF Downloads 1444 427 51