Investigating Land Surface Effects on the Moisture Transport over South America with a Moisture Tagging Model

Zhao Yang Department of Atmospheric Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois, and Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Zhao Yang in
Current site
Google Scholar
PubMed
Close
and
Francina Dominguez Department of Atmospheric Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois

Search for other papers by Francina Dominguez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land–atmosphere interactions are a critical component of precipitation processes within the Amazon basin and La Plata River basin (LPRB) in South America. Two of the possible pathways through which the land surface can affect precipitation are 1) by changing the amount of moisture available for precipitation (moisture recycling) and 2) by changing the atmospheric thermal structure and consequently affecting circulation patterns. In this study, the Weather Research and Forecasting (WRF) Model with embedded water vapor tracers (WVT) is used to disentangle these relative contributions, with a particular focus on the precipitation of LPRB. Using WRF-WVT we track the moisture that originates from the Amazon basin over a 10-yr period. It is estimated that Amazon evapotranspiration (ET) contributes to around 30% of the total precipitation over the Amazon and around 16% over the LPRB. Focusing on large-scale circulation patterns that transport moisture into the LPRB, we show that land surface conditions in northwestern Argentina are critical for the meridional transport of moisture to higher latitudes via Chaco jet events (CJEs). Warm surface air temperature associated with dry soil moisture over northwestern Argentina is linked to enhanced CJE northerly low-level winds that intensify moisture transport by changing continental-scale circulation patterns. WRF sensitivity tests confirm that soil moisture variations over this region affect meridional moisture transport.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhao Yang, zhao.yang@pnnl.gov

Abstract

Land–atmosphere interactions are a critical component of precipitation processes within the Amazon basin and La Plata River basin (LPRB) in South America. Two of the possible pathways through which the land surface can affect precipitation are 1) by changing the amount of moisture available for precipitation (moisture recycling) and 2) by changing the atmospheric thermal structure and consequently affecting circulation patterns. In this study, the Weather Research and Forecasting (WRF) Model with embedded water vapor tracers (WVT) is used to disentangle these relative contributions, with a particular focus on the precipitation of LPRB. Using WRF-WVT we track the moisture that originates from the Amazon basin over a 10-yr period. It is estimated that Amazon evapotranspiration (ET) contributes to around 30% of the total precipitation over the Amazon and around 16% over the LPRB. Focusing on large-scale circulation patterns that transport moisture into the LPRB, we show that land surface conditions in northwestern Argentina are critical for the meridional transport of moisture to higher latitudes via Chaco jet events (CJEs). Warm surface air temperature associated with dry soil moisture over northwestern Argentina is linked to enhanced CJE northerly low-level winds that intensify moisture transport by changing continental-scale circulation patterns. WRF sensitivity tests confirm that soil moisture variations over this region affect meridional moisture transport.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhao Yang, zhao.yang@pnnl.gov
Save
  • Arraut, J. M., C. Nobre, H. M. J. Barbosa, G. Obregon, and J. Marengo, 2012: Aerial rivers and lakes: Looking at large-scale moisture transport and its relation to Amazonia and to subtropical rainfall in South America. J. Climate, 25, 543556, https://doi.org/10.1175/2011JCLI4189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlage, M., M. Tewari, F. Chen, G. Miguez-Macho, Z.-L. Yang, and G.-Y. Niu, 2015: The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 129, 485498, https://doi.org/10.1007/s10584-014-1308-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., D. Entekhabi, and P. S. Eagleson, 1993: Estimation of continental precipitation recycling. J. Climate, 6, 10771089, https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., G. B. Bonan, and S. Levis, 2006: Soil moisture feedbacks to precipitation in southern Africa. J. Climate, 19, 41984206, https://doi.org/10.1175/JCLI3856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 2006: Evidence for trends in the Northern Hemisphere water cycle. Geophys. Res. Lett., 33, L14712, https://doi.org/10.1029/2006GL026359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 2037, https://doi.org/10.1175/JHM557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., C. A. Schlosser, and K. L. Brubaker, 2009a: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278288, https://doi.org/10.1175/2008JHM1016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., K. L. Brubaker, and T. DelSole, 2009b: Import and export of atmospheric water vapor between nations. J. Hydrol., 365, 1122, https://doi.org/10.1016/j.jhydrol.2008.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., G. Miguez-Macho, and H. Hu, 2016: WRF with water vapor tracers: A study of moisture sources for the North American monsoon. J. Hydrometeor., 17, 19151927, https://doi.org/10.1175/JHM-D-15-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, https://doi.org/10.1029/97WR03499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and R. L. Bras, 1994: Precipitation recycling in the Amazon basin. Quart. J. Roy. Meteor. Soc., 120, 861880, https://doi.org/10.1002/qj.49712051806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 1997: An analysis of the soil moisture–rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33, 725735, https://doi.org/10.1029/96WR03756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L. and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., A. Drumond, R. Nieto, R. M. Trigo, and A. Stohl, 2010: On the origin of continental precipitation. Geophys. Res. Lett., 37, L13804, https://doi.org/10.1029/2010GL043712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goessling, H. F., and C. H. Reick, 2013: On the “well-mixed” assumption and numerical 2-D tracing of atmospheric moisture. Atmos. Chem. Phys., 13, 55675585, https://doi.org/10.5194/acp-13-5567-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hu, H., and F. Dominguez, 2015: Evaluation of oceanic and terrestrial sources of moisture for the North American monsoon using numerical models and precipitation stable isotopes. J. Hydrometeor., 16, 1935, https://doi.org/10.1175/JHM-D-14-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Insua-Costa, D., and G. Miguez-Macho, 2018: A new moisture tagging capability in the Weather Research and Forecasting model: Formulation, validation and application to the 2014 Great Lake-effect snowstorm. Earth Syst. Dyn., 9, 167185, https://doi.org/10.5194/esd-9-167-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Y. Chang, H. Wang, and S. D. Schubert, 2016: Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: A comprehensive analysis over North America. J. Climate, 29, 73457364, https://doi.org/10.1175/JCLI-D-16-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettau, H., K. Lettau, and L. C. B. Molion, 1979: Amazonia’s hydrologic cycle and the role of atmospheric recycling in assessing deforestation effects. Mon. Wea. Rev., 107, 227238, https://doi.org/10.1175/1520-0493(1979)107<0227:AHCATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., 2006: On the hydrological cycle of the Amazon Basin: A historical review and current state-of-the-art. Rev. Bras. Meteor., 21, 119.

    • Search Google Scholar
    • Export Citation
  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., and F. Dominguez, 2014: Sources of atmospheric moisture for the La Plata River Basin. J. Climate, 27, 67376753, https://doi.org/10.1175/JCLI-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., F. Dominguez, and G. Miguez-Macho, 2016: Impacts of a groundwater scheme on hydroclimatological conditions over southern South America. J. Hydrometeor., 17, 29592978, https://doi.org/10.1175/JHM-D-16-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Y. Fan, C. P. Weaver, R. Walko, and A. Robock, 2007: Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation. J. Geophys. Res., 112, D13108, https://doi.org/10.1029/2006JD008112.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., A. Rios-Entenza, and F. Dominguez, 2013: The impact of soil moisture and evapotranspiration fluxes on the spring water cycle in the Iberian Peninsula: A study with moisture tracers in WRF. 2013 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H12B-05.

  • Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, https://doi.org/10.5194/hess-15-453-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myneni, R., Y. Knyazikhin, and T. Park, 2015: MYD15A2 MODIS/Aqua Leaf Area Index/FPAR 8-Day L4 Global 1km SIN Grid. NASA LP DAAC. Accessed 31 May 2017, https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MYD15A2/.

  • Nepstad, D., and Coauthors, 2009: The end of deforestation in the Brazilian Amazon. Science, 326, 13501351, https://doi.org/10.1126/science.1182108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nogués-Paegle, J. and K. C. Mo, 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125, 279291, https://doi.org/10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14, 12271242, https://doi.org/10.1175/1520-0442(2001)014<1227:PRSMCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruscica, R. C., A. A. Sörensson, and C. G. Menéndez, 2015: Pathways between soil moisture and precipitation in southeastern South America. Atmos. Sci. Lett., 16, 267272, https://doi.org/10.1002/asl2.552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salati, E., A. Dall’Olio, E. Matsui, and J. R. Gat, 1979: Recycling of water in the Amazon Basin: An isotopic study. Water Resour. Res., 15, 12501258, https://doi.org/10.1029/WR015i005p01250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and A. C. Saulo, 2002: Chaco low-level jet events characterization during the austral summer season. J. Geophys. Res., 107, 4816, https://doi.org/10.1029/2001JD001315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, https://doi.org/10.1175/MWR3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saulo, A. C., M. E. Seluchi, and M. Nicolini, 2004: A case study of a Chaco low-level jet event. Mon. Wea. Rev., 132, 26692683, https://doi.org/10.1175/MWR2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saulo, A. C., L. Ferreira, J. Nogués-Paegle, M. Seluchi, and J. Ruiz, 2010: Land–atmosphere interactions during a northwestern Argentina low event. Mon. Wea. Rev., 138, 24812498, https://doi.org/10.1175/2010MWR3227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., A. C. Saulo, M. Nicolini, and P. Satyamurty, 2003: The northwestern Argentinean low: A study of two typical events. Mon. Wea. Rev., 131, 23612378, https://doi.org/10.1175/1520-0493(2003)131<2361:TNALAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soares-Filho, B. S., and Coauthors, 2006: Modelling conservation in the Amazon basin. Nature, 440, 520523, https://doi.org/10.1038/nature04389.

  • Sodemann, H., H. Wernli, and C. Schwierz, 2009: Sources of water vapour contributing to the Elbe flood in August 2002—A tagging study in a mesoscale model. Quart. J. Roy. Meteor. Soc., 135, 205223, https://doi.org/10.1002/qj.374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., S. R. Arnold, and C. M. Taylor, 2012: Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282285, https://doi.org/10.1038/nature11390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and M. De Kauwe, 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433, https://doi.org/10.1038/ngeo1173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., H. H. G. Savenije, B. Schaefli, and S. C. Steele-Dunne, 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., O. A. Tuinenburg, H. R. Knoche, H. Kunstmann, and H. H. G. Savenije, 2013: Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking? Hydrol. Earth Syst. Sci., 17, 48694884, https://doi.org/10.5194/hess-17-4869-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: The South American Low-Level Jet Experiment. Bull. Amer. Meteor. Soc., 87, 6377, https://doi.org/10.1175/BAMS-87-1-63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and D. B. Wolff, 2012: Evaluation of TRMM rain estimates using ground measurements over central Florida. J. Appl. Meteor. Climatol., 51, 926940, https://doi.org/10.1175/JAMC-D-11-080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., H. Su, and Z.-L. Yang, 2016a: Impact of moisture flux convergence and soil moisture on precipitation: A case study for the southern United States with implications for the globe. Climate Dyn., 46, 467481, https://doi.org/10.1007/s00382-015-2593-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., Q. Jin, Z.-L. Yang, and P. A. Dirmeyer, 2016b: Role of ocean evaporation in California droughts and floods. Geophys. Res. Lett., 43, 65546562, https://doi.org/10.1002/2016GL069386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, J. S., R. Fu, J. R. Worden, S. Chakraborty, N. E. Clinton, C. Risi, Y. Sun, and L. Yin, 2017: Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA, 114, 84818486, https://doi.org/10.1073/pnas.1621516114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Qian, G. Lin, R. Leung, and Y. Zhang, 2012: Some issues in uncertainty quantification and parameter tuning: A case study of convective parameterization scheme in the WRF regional climate model. Atmos. Chem. Phys., 12, 24092427, https://doi.org/10.5194/acp-12-2409-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X, B. Yong, L. Ren, Y. Zhang, and D. Long, 2017: Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements. Int. J. Remote Sens., 38, 56885709, https://doi.org/10.1080/01431161.2017.1346400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemp, D. C., C. F. Schleussner, H. M. J. Barbosa, R. J. van der Ent, J. F. Donges, J. Heinke, G. Sampaio, and A. Rammig, 2014: On the importance of cascading moisture recycling in South America. Atmos. Chem. Phys., 14, 13 33713 359, https://doi.org/10.5194/acp-14-13337-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1114 305 18
PDF Downloads 1222 311 21