On the Linearity of the Stratospheric and Euro-Atlantic Sector Response to ENSO

Paloma Trascasa-Castro School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Paloma Trascasa-Castro in
Current site
Google Scholar
PubMed
Close
,
Amanda C. Maycock School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Amanda C. Maycock in
Current site
Google Scholar
PubMed
Close
,
Yu Yeung Scott Yiu Department of Chemistry, University of Cambridge, Cambridge, United Kingdom

Search for other papers by Yu Yeung Scott Yiu in
Current site
Google Scholar
PubMed
Close
, and
Jennifer K. Fletcher School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Jennifer K. Fletcher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dependence of the winter stratospheric and Euro-Atlantic climate response on ENSO amplitude is investigated using the HadGEM3 model. Experiments are performed with imposed east Pacific sea surface temperature perturbations corresponding to Niño-3.4 anomalies of ±0.75, 1.5, 2.25, and 3.0 K. In the North Pacific, El Niño (EN) deepens and shifts the Aleutian low eastward, while the equivalent magnitude La Niña (LN) perturbations drive anomalies of opposite sign that are around 4 times weaker. The muted North Pacific response to LN can be traced back to the weaker response of tropical convection and the associated anomalous Rossby wave source. The EN perturbations weaken the Arctic polar vortex, with the winter mean zonal mean zonal wind at 60°N and 10 hPa decreasing approximately linearly with Niño-3.4 anomaly by around −3.6 m s−1 K−1. For the strongest EN case (+3 K), the frequency of sudden stratospheric warmings (SSWs) increases by ~60% compared to the control experiment. Hence the results do not support a saturation of the stratospheric pathway for strong EN as suggested in previous literature. The equivalent amplitude LN perturbations cause a weak strengthening of the polar vortex and no substantial change in SSW frequency, in contrast to some reanalysis-based studies. EN induces a negative North Atlantic Oscillation (NAO) index throughout boreal winter, which increases approximately linearly with the Niño-3.4 anomaly by around −0.6 standard deviations K−1. Only the response to the strongest LN perturbations projects onto a weak positive NAO in November, suggesting that the mechanism for the Euro-Atlantic response to LN may be distinct from EN.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0746.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paloma Trascasa-Castro, ee17pt@leeds.ac.uk.

Abstract

The dependence of the winter stratospheric and Euro-Atlantic climate response on ENSO amplitude is investigated using the HadGEM3 model. Experiments are performed with imposed east Pacific sea surface temperature perturbations corresponding to Niño-3.4 anomalies of ±0.75, 1.5, 2.25, and 3.0 K. In the North Pacific, El Niño (EN) deepens and shifts the Aleutian low eastward, while the equivalent magnitude La Niña (LN) perturbations drive anomalies of opposite sign that are around 4 times weaker. The muted North Pacific response to LN can be traced back to the weaker response of tropical convection and the associated anomalous Rossby wave source. The EN perturbations weaken the Arctic polar vortex, with the winter mean zonal mean zonal wind at 60°N and 10 hPa decreasing approximately linearly with Niño-3.4 anomaly by around −3.6 m s−1 K−1. For the strongest EN case (+3 K), the frequency of sudden stratospheric warmings (SSWs) increases by ~60% compared to the control experiment. Hence the results do not support a saturation of the stratospheric pathway for strong EN as suggested in previous literature. The equivalent amplitude LN perturbations cause a weak strengthening of the polar vortex and no substantial change in SSW frequency, in contrast to some reanalysis-based studies. EN induces a negative North Atlantic Oscillation (NAO) index throughout boreal winter, which increases approximately linearly with the Niño-3.4 anomaly by around −0.6 standard deviations K−1. Only the response to the strongest LN perturbations projects onto a weak positive NAO in November, suggesting that the mechanism for the Euro-Atlantic response to LN may be distinct from EN.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0746.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paloma Trascasa-Castro, ee17pt@leeds.ac.uk.

Supplementary Materials

    • Supplemental Materials (PDF 986.90 KB)
Save
  • Ayarzagüena, B., S. Ineson, N. J. Dunstone, M. P. Baldwin, and A. A. Scaife, 2018: Intraseasonal effects of El Niño–Southern Oscillation on North Atlantic climate. J. Climate, 31, 88618873, https://doi.org/10.1175/JCLI-D-18-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayarzagüena, B., J. López-Parages, M. Iza, N. Calvo, and B. Rodríguez-Fonseca, 2019: Stratospheric role in interdecadal changes of El Niño impacts over Europe. Climate Dyn., 52, 11731186, https://doi.org/10.1007/s00382-018-4186-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., and N. Calvo, 2014: On the relationship between ENSO, stratospheric sudden warmings, and blocking. J. Climate, 27, 47044720, https://doi.org/10.1175/JCLI-D-13-00770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayr, T., D. I. V. Domeisen, and C. Wengel, 2019: The effect of the equatorial Pacific cold SST bias on simulated ENSO teleconnections to the North Pacific and California. Climate Dyn., https://doi.org/10.1007/S00382-019-04746-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, C. J., L. J. Gray, A. J. Charlton-Perez, M. M. Joshi, and A. A. Scaife, 2009: Stratospheric communication of El Niño teleconnections to European winter. J. Climate, 22, 40834096, https://doi.org/10.1175/2009JCLI2717.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and L. M. Polvani, 2011: El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record. Geophys. Res. Lett., 38, L13807, https://doi.org/10.1029/2011GL048084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., L. M. Polvani, and C. Deser, 2014: Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation teleconnections. Environ. Res. Lett., 9, 024014, https://doi.org/10.1088/1748-9326/9/2/024014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., and E. Manzini, 2009: Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Climate, 22, 12231238, https://doi.org/10.1175/2008JCLI2549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvo, N., and Coauthors, 2017: Northern Hemisphere stratospheric pathway of different El Niño flavors in stratosphere-resolving CMIP5 models. J. Climate, 30, 43514371, https://doi.org/10.1175/JCLI-D-16-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., and L. Terray, 2001: Dual influence of Atlantic and Pacific SST anomalies on the North Atlantic/Europe winter climate. Geophys. Res. Lett., 28, 31953198, https://doi.org/10.1029/2000GL012510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton-Perez, A. J., and Coauthors, 2013: On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos., 118, 24942505, https://doi.org/10.1002/jgrd.50125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2001: Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: Model and reanalysis. J. Geophys. Res. Atmos., 106, 27 30727 322, https://doi.org/10.1029/2000JD000214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., M. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21, 18451862, https://doi.org/10.1002/joc.631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., A. H. Butler, K. Frohlich, M. Bittner, W. A. Müller, and J. Baehr, 2015: Seasonal predictability over Europe arising from El Niño and stratospheric variability in the MPI-ESM seasonal prediction system. J. Climate, 28, 256271, https://doi.org/10.1175/JCLI-D-14-00207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2019: The teleconnection of El Niño Southern Oscillation to the stratosphere. Rev. Geophys., 57, 547, https://doi.org/10.1029/2018RG000596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmon, H., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, https://doi.org/10.1029/2008JD009920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, https://doi.org/10.1175/2010JCLI3010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C., A. H. Butler, D. W. Waugh, M. M. Hurwitz, and L. M. Polvani, 2012: Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J. Geophys. Res., 117, D19106, https://doi.org/10.1029/2012JD017777.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C., I. Weinberger, I. P. White, L. D. Oman, V. Aquila, and Y. K. Lim, 2018: The salience of nonlinearities in the boreal winter response to ENSO: North Pacific and North America. Climate Dyn., 52, 44294446, https://doi.org/10.1007/S00382-018-4386-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and R. Francisco, 2000: Uncertainties in regional climate change prediction: A regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Climate Dyn., 16, 169182, https://doi.org/10.1007/PL00013733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, H.-F., and H. Funke, 1986: Blockierungssituationen im europäisch-atlantischen Raum, Teil 1: Phänomenologische Untersuchungen. Z. Meteor., 36, 104112.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., N. Butchart, T. J. Hinton, S. M. Osprey, and L. J. Gray, 2012: The effect of a well-resolved stratosphere on surface climate: Differences between CMIP5 simulations with high and low top versions of the Met Office climate model. J. Climate, 25, 70837099, https://doi.org/10.1175/JCLI-D-11-00579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., N. J. Dunstone, A. A. Scaife, D. M. Smith, S. Ineson, J. Lim, and D. Fereday, 2019: The impact of strong El Niño and La Niña events on the North Atlantic. Geophys. Res. Lett., 46, 28742883, https://doi.org/10.1029/2018GL081776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., and I. R. Simpson, 2014: The downward influence of stratospheric sudden warmings. J. Atmos. Sci., 71, 38563876, https://doi.org/10.1175/JAS-D-14-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35, https://doi.org/10.1029/134GM01.

    • Crossref
    • Export Citation
  • Hurwitz, M. M., N. Calvo, C. I. Garfinkel, A. H. Butler, S. Ineson, C. Cagnazzo, E. Manzini, and C. Peña-Ortiz, 2014: Extra-tropical atmospheric response to ENSO in the CMIP5 models. Climate Dyn., 43, 33673376, https://doi.org/10.1007/s00382-014-2110-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, https://doi.org/10.1038/ngeo381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iza, M., N. Calvo, and E. Manzini, 2016: The stratospheric pathway of La Niña. J. Climate, 29, 88998914, https://doi.org/10.1175/JCLI-D-16-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez-Esteve, B., and D. I. V. Domeisen, 2018: The tropospheric pathway of the ENSO–North Atlantic teleconnection. J. Climate, 31, 45634584, https://doi.org/10.1175/JCLI-D-17-0716.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez-Esteve, B., and D. I. V. Domeisen, 2019: Nonlinearity in the North Pacific atmospheric response to a linear ENSO forcing. Geophys. Res. Lett., 46, 22712281, https://doi.org/10.1029/2018GL081226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and Y. Kosaka, 2016: The impact of eastern equatorial Pacific convection on the diversity of boreal winter El Niño teleconnection patterns. Climate Dyn., 47, 37373765, https://doi.org/10.1007/S00382-016-3039-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, https://doi.org/10.1029/2005GL022860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and N.-C. Lau, 2012: Impact of ENSO on the atmospheric variability over the North Atlantic in late winter—Role of transient eddies. J. Climate, 25, 320342, https://doi.org/10.1175/JCLI-D-11-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and N.-C. Lau, 2013: Influences of ENSO on stratospheric variability, and the descent of stratospheric perturbations into the lower troposphere. J. Climate, 26, 47254748, https://doi.org/10.1175/JCLI-D-12-00581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzini, E., M. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 38633881, https://doi.org/10.1175/JCLI3826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., and P. Hitchcock, 2015: Do split and displacement sudden stratospheric warmings have different annular mode signatures? Geophys. Res. Lett., 42, 10 94310 951, https://doi.org/10.1002/2015GL066754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizielinski, M. S., and Coauthors, 2014: High-resolution global climate modelling: The UPSCALE project, a large-simulation campaign. Geosci. Model Dev., 7, 16291640, https://doi.org/10.5194/gmd-7-1629-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W. A., and E. Roeckner, 2006: ENSO impact on midlatitude circulation patterns in future climate change projections. Geophys. Res. Lett., 33, L05711, https://doi.org/10.1029/2005GL025032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niebauer, H. J., 1988: Effects of El Niño–Southern Oscillation and North Pacific weather patterns on interannual variability in the subarctic Bering Sea. J. Geophys. Res., 93, 50515068, https://doi.org/10.1029/JC093iC05p05051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osprey, S. M., L. J. Gray, S. C. Hardiman, N. Butchart, and T. J. Hinton, 2013: Stratospheric variability in 20th century CMIP5 simulations of the Met Office climate model: High-top versus low-top. J. Climate, 26, 15951606, https://doi.org/10.1175/JCLI-D-12-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., L. Sun, A. H. Butler, J. H. Richter, and C. Deser, 2017: Distinguishing stratospheric sudden warmings from ENSO as key drivers of wintertime climate variability over the North Atlantic and Eurasia. J. Climate, 30, 19591969, https://doi.org/10.1175/JCLI-D-16-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, J., and R. Ren, 2016a: Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 1. Observations. J. Geophys. Res. Atmos., 121, 90009016, https://doi.org/10.1002/2015JD024520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, J., and R. Ren, 2016b: Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 2. Model study with WACCM. J. Geophys. Res. Atmos., 121, 90179032, https://doi.org/10.1002/2015JD024521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., J. Overland, and N. Bond, 2005: The Aleutian low and winter climatic conditions in the Bering Sea. Part I: Classification. J. Climate, 18, 160177, https://doi.org/10.1175/JCLI3253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., and Coauthors, 2016: A review of ENSO influence on the North Atlantic. A non-stationary signal. Atmosphere, 7, 87, https://doi.org/10.3390/atmos7070087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2016: Seasonal winter forecasts and the stratosphere. Atmos. Sci. Lett., 17, 5156, https://doi.org/10.1002/asl.598.

  • Song, K., and S. W. Son, 2018: Revisiting the ENSO–SSW relationship. J. Climate, 31, 21332143, https://doi.org/10.1175/JCLI-D-17-0078.1.

  • Taguchi, M., and D. L. Hartmann, 2005: Interference of extratropical surface climate anomalies induced by El Niño and stratospheric sudden warmings. Geophys. Res. Lett., 32, L04709, https://doi.org/10.1029/2004GL022004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and A. A. Scaife, 2006: The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett., 33, L24704, https://doi.org/10.1029/2006GL027881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visbeck, M. H., J. W. Hurrell, L. Polvani, and H. M. Cullen, 2001: The North Atlantic Oscillation: Past, present, and future. Proc. Natl. Acad. Sci. USA, 98, 12 87612 877, https://doi.org/10.1073/pnas.231391598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and N. E. Graham, 1993: Convective cloud systems and warm-pool sea surface temperatures: Coupled interactions and self-regulation. J. Geophys. Res., 98, 12 88112 893, https://doi.org/10.1029/93JD00872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinberger, I., C. I. Garfinkel, I. P. White, and L. Oman, 2019: The salience of nonlinearities in the boreal winter response to ENSO: Arctic stratosphere and Europe. Climate Dyn., https://doi.org/10.1007/s00382-019-04805-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., X. Zhou, J. Li, C. Sun, J. Feng, and X. Ma, 2018: The key role of background sea surface temperature over the cold tongue in asymmetric responses of the Arctic stratosphere to El Niño–Southern Oscillation. Environ. Res. Lett., 13, 114007, https://doi.org/10.1088/1748-9326/aae79b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yiu, Y. Y. C., and A.C. Maycock, 2019: On the seasonality of the El Niño teleconnection to the Amundsen Sea region. J. Climate, 32, 48294845, https://doi.org/10.1175/JCLI-D-18-0813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1993: Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. J. Climate, 6, 18981913, https://doi.org/10.1175/1520-0442(1993)006<1898:LSVOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., J. Li, F. Xie, Q. Chen, R. Ding, W. Zhang, and Y. Li, 2018: Does extreme El Niño have a different effect on the stratosphere in boreal winter than its moderate counterpart? J. Geophys. Res. Atmos., 123, 30713086, https://doi.org/10.1002/2017JD028064.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 655 239 12
PDF Downloads 610 208 8