Reassessing the Effect of Cloud Type on Earth’s Energy Balance in the Age of Active Spaceborne Observations. Part I: Top of Atmosphere and Surface

Tristan S. L’Ecuyer Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Tristan S. L’Ecuyer in
Current site
Google Scholar
PubMed
Close
,
Yun Hang Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Yun Hang in
Current site
Google Scholar
PubMed
Close
,
Alexander V. Matus Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Alexander V. Matus in
Current site
Google Scholar
PubMed
Close
, and
Zhien Wang Department of Atmospheric and Oceanic Sciences and Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Zhien Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study revisits the classical problem of quantifying the radiative effects of unique cloud types in the era of spaceborne active observations. The radiative effects of nine cloud types, distinguished based on their vertical structure defined by CloudSat and CALIPSO observations, are assessed at both the top of the atmosphere and the surface. The contributions from single- and multilayered clouds are explicitly diagnosed. The global, annual mean net cloud radiative effect at the top of the atmosphere is found to be −17.1 ± 4.2 W m−2 owing to −44.2 ± 2 W m−2 of shortwave cooling and 27.1 ± 3.7 W m−2 of longwave heating. Leveraging explicit cloud base and vertical structure information, we further estimate the annual mean net cloud radiative effect at the surface to be −24.8 ± 8.7 W m−2 (−51.1 ± 7.8 W m−2 in the shortwave and 26.3 ± 3.8 W m−2 in the longwave). Multilayered clouds are found to exert the strongest influence on the top-of-atmosphere energy balance. However, a strong asymmetry in net cloud radiative cooling between the hemispheres (8.6 W m−2) is dominated by enhanced cooling from stratocumulus over the southern oceans. It is found that there is no corresponding asymmetry at the surface owing to enhanced longwave emission by southern ocean clouds in winter, which offsets a substantial fraction of their impact on solar absorption in summer. Thus the asymmetry in cloud radiative effects is entirely realized as an atmosphere heating imbalance between the hemispheres.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yun Hang, yhang4@wisc.edu

Abstract

This study revisits the classical problem of quantifying the radiative effects of unique cloud types in the era of spaceborne active observations. The radiative effects of nine cloud types, distinguished based on their vertical structure defined by CloudSat and CALIPSO observations, are assessed at both the top of the atmosphere and the surface. The contributions from single- and multilayered clouds are explicitly diagnosed. The global, annual mean net cloud radiative effect at the top of the atmosphere is found to be −17.1 ± 4.2 W m−2 owing to −44.2 ± 2 W m−2 of shortwave cooling and 27.1 ± 3.7 W m−2 of longwave heating. Leveraging explicit cloud base and vertical structure information, we further estimate the annual mean net cloud radiative effect at the surface to be −24.8 ± 8.7 W m−2 (−51.1 ± 7.8 W m−2 in the shortwave and 26.3 ± 3.8 W m−2 in the longwave). Multilayered clouds are found to exert the strongest influence on the top-of-atmosphere energy balance. However, a strong asymmetry in net cloud radiative cooling between the hemispheres (8.6 W m−2) is dominated by enhanced cooling from stratocumulus over the southern oceans. It is found that there is no corresponding asymmetry at the surface owing to enhanced longwave emission by southern ocean clouds in winter, which offsets a substantial fraction of their impact on solar absorption in summer. Thus the asymmetry in cloud radiative effects is entirely realized as an atmosphere heating imbalance between the hemispheres.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yun Hang, yhang4@wisc.edu
Save
  • Ackerman, S., R. Holz, R. Frey, E. Eloranta, B. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 10731086, https://doi.org/10.1175/2007JTECHA1053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement program. Phys. Today, 56, 38, https://doi.org/10.1063/1.1554135.

  • Allan, R. P., 2011: Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere. Meteor. Appl., 18, 324333, https://doi.org/10.1002/met.285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J., and G. Stephens, 2011: Spatial statistics of likely convective clouds in Cloudsat data. J. Geophys. Res., 116, D04104, https://doi.org/10.1029/2010JD014444.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, https://doi.org/10.1175/JCLI-D-13-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., K.-M. Lau, and Y. C. Sud, 1997: Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing. J. Climate, 10, 20552077, https://doi.org/10.1175/1520-0442(1997)010<2055:SSTALS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, https://doi.org/10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calisto, M., D. Folini, M. Wild, and L. Bengtsson, 2014: Cloud radiative forcing intercomparison between fully coupled CMIP5 models and CERES satellite data. Ann. Geophys., 32, 793807, https://doi.org/10.5194/angeo-32-793-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513516, https://doi.org/10.1126/science.245.4917.513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 60116 615, https://doi.org/10.1029/JD095iD10p16601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, M. A., and J. C. Comiso, 2011: Cloud features detected by MODIS but not by CloudSat and CALIOP. Geophys. Res. Lett., 38, L24813, https://doi.org/10.1029/2011GL050063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., W. B. Rossow, and Y. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286, https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chepfer, H., S. Bony, D. Winker, M. Chiriaco, J.-L. Dufresne, and G. Sèze, 2008: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys. Res. Lett., 35, L15704, https://doi.org/10.1029/2008GL034207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., T. P. Ackerman, and G. G. Mace, 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107, 4714, https://doi.org/10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and R. P. Lawson, 2013: Evaluation of several A-Train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52, 10141030, https://doi.org/10.1175/JAMC-D-12-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008: The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J. Climate, 21, 23132325, https://doi.org/10.1175/2007JCLI1936.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, https://doi.org/10.1038/ngeo1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J., 2001: Clear-sky longwave irradiance at the Earth’s surface—Evaluation of climate models. J. Climate, 14, 16471670, https://doi.org/10.1175/1520-0442(2001)014<1647:CSLIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleckler, P., and Coauthors, 1995: Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models. Geophys. Res. Lett., 22, 791794, https://doi.org/10.1029/95GL00113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., N. A. Ritchey, A. C. Wilber, C. H. Whitlock, G. G. Gibson, and P. W. Stackhouse Jr., 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12, 26912710, https://doi.org/10.1175/1520-0442(1999)012<2691:ACOSRB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., and S. G. Warren, 1999: Extended edited synoptic cloud reports from ships and land stations over the globe, 1952–1996. Environmental Sciences Division, Office of Biological and Environmental Research, U.S. Department of Energy, https://doi.org/10.3334/CDIAC/cli.ndp026c.

    • Crossref
    • Export Citation
  • Ham, S.-H., and Coauthors, 2017: Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar–lidar (RL) products. J. Geophys. Res., 122, 88528884, https://doi.org/10.1002/2017JD026725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hang, Y, T. S. L’Ecuyer, D. S. Henderson, A. V. Matus, and Z. Wang, 2019: Reassessing the effect of cloud type on Earth’s energy balance in the age of active spaceborne observations. Part II: Atmospheric heating. J. Climate, 32, 62196236, https://doi.org/10.1175/JCLI-D-18-0754.1.

    • Crossref
    • Export Citation
  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95, 18 68718 703, https://doi.org/10.1029/JD095iD11p18687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D., V. Ramanathan, A. Berroir, and G. Hunt, 1986: Earth radiation budget data and climate research. Rev. Geophys., 24, 439468, https://doi.org/10.1029/RG024i002p00439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., T. L’Ecuyer, G. Stephens, P. Partain, and M. Sekiguchi, 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853871, https://doi.org/10.1175/JAMC-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, L., 1803: I. On the modifications of clouds, and on the principles of their production, suspension, and destruction; being the substance of an essay read before the Askesian Society in the session 1802–03. Philos. Mag., 17 (65), 511, https://doi.org/10.1080/14786440308676365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, L., 1843: Seven Lectures on Meteorology. A Second Edition Carefully Revised by the Author. Harvey and Darton, London, 218 pp.

  • Jakob, C., and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30, 2082, https://doi.org/10.1029/2003GL018367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., S. Sun-Mack, W. F. Miller, F. G. Rose, Y. Chen, P. Minnis, and B. A. Wielicki, 2010: Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J. Geophys. Res., 115, D00H28, https://doi.org/10.1029/2009JD012277.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 1994: Clouds and their effects on the climate system. Phys. Today, 47, 3642, https://doi.org/10.1063/1.881424.

  • L’Ecuyer, T. S., and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train. Phys. Today, 63, 3641, https://doi.org/10.1063/1.3463626.

  • L’Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse, 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res., 113, D00A15, https://doi.org/10.1029/2008JD009951.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., W. Berg, J. Haynes, M. Lebsock, and T. Takemura, 2009: Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. J. Geophys. Res., 114, D09211, https://doi.org/10.1029/2008JD011273.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L., D. Waliser, G. Stephens, S. Lee, T. L’Ecuyer, S. Kato, N. Loeb, and H.-Y. Ma, 2013: Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J. Geophys. Res., 118, 81668184, https://doi.org/10.1002/JGRD.50378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, https://doi.org/10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., H. Wang, A. Cheng, S. Kato, J. T. Fasullo, K.-M. Xu, and R. P. Allan, 2016: Observational constraints on atmospheric and oceanic cross-equatorial heat transports: Revisiting the precipitation asymmetry problem in climate models. Climate Dyn., 46, 32393257, https://doi.org/10.1007/s00382-015-2766-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and F. J. Wrenn, 2013: Evaluation of the hydrometeor layers in the east and west Pacific within ISCCP cloud-top pressure–optical depth bins using merged CloudSat and CALIPSO data. J. Climate, 26, 94299444, https://doi.org/10.1175/JCLI-D-12-00207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Coauthors, 2006: Cloud radiative forcing at the Atmospheric Radiation Measurement Program Climate Research Facility: 1. Technique, validation, and comparison to satellite-derived diagnostic quantities. J. Geophys. Res., 111, D11S90, https://doi.org/10.1029/2005JD005921.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, https://doi.org/10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361385, https://doi.org/10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, https://doi.org/10.1029/2009JD013422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and S. A. McFarlane, 2009: Cloud classes and radiative heating profiles at the Manus and Nauru Atmospheric Radiation Measurement (ARM) sites. J. Geophys. Res., 114, D19204, https://doi.org/10.1029/2009JD011703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matus, A. V., and T. S. L’Ecuyer, 2017: The role of cloud phase in Earth’s radiation budget. J. Geophys. Res. Atmos., 122, 25592578, https://doi.org/10.1002/2016JD025951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGill, M. J., M. A. Vaughan, C. R. Trepte, W. D. Hart, D. L. Hlavka, D. M. Winker, and R. Kuehn, 2007: Airborne validation of spatial properties measured by the CALIPSO lidar. J. Geophys. Res., 112, D20201, https://doi.org/10.1029/2007JD008768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mülmenstädt, J., and Coauthors, 2018: Using CALIOP to estimate cloud-field base height and its uncertainty: The Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset. Earth Syst. Sci. Data, 10, 22792293, https://doi.org/10.5194/ESSD-10-2279-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., A. Del Genio, G. G. Mace, S. Benson, E. E. Clothiaux, and P. Kollias, 2008: Impact of dynamics and atmospheric state on cloud vertical overlap. J. Climate, 21, 17581770, https://doi.org/10.1175/2007JCLI1828.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., A. Del Genio, M. Bauer, and W. Kovari, 2010: Cloud vertical distribution across warm and cold fronts in CloudSat–CALIPSO data and a general circulation model. J. Climate, 23, 33973415, https://doi.org/10.1175/2010JCLI3282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ockert-Bell, M. E., and D. L. Hartmann, 1992: The effect of cloud type on Earth’s energy balance: Results for selected regions. J. Climate, 5, 11571171, https://doi.org/10.1175/1520-0442(1992)005<1157:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and W. Rossow, 2011: The cloud radiative effects of International Satellite Cloud Climatology Project weather states. J. Geophys. Res., 116, D12202, https://doi.org/10.1029/2010JD015472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, D. Lee, and S. Kato, 2016: Radiative effects of global MODIS cloud regimes. J. Geophys. Res., 121, 22992317, https://doi.org/10.1002/2015JD024502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, and D. Lee, 2017: New insights about cloud vertical structure from CloudSat and CALIPSO observations. J. Geophys. Res. Atmos., 122, 92809300, https://doi.org/10.1002/2017JD026629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., and J. R. Key, 2003: Antarctic cloud radiative forcing at the surface estimated from the AVHRR polar pathfinder and ISCCP D1 datasets, 1985–93. J. Appl. Meteor., 42, 827840, https://doi.org/10.1175/1520-0450(2003)042<0827:ACRFAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., R. Hemler, and S. A. Klein, 2006: Using stochastically generated subcolumns to represent cloud structure in a large-scale model. Mon. Wea. Rev., 134, 36443656, https://doi.org/10.1175/MWR3257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, https://doi.org/10.1109/TGRS.2002.808301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2014: Reconciling ground-based and space-based estimates of the frequency of occurrence and radiative effect of clouds around Darwin, Australia. J. Appl. Meteor. Climatol., 53, 456478, https://doi.org/10.1175/JAMC-D-13-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, and B. R. Barkstrom, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, https://doi.org/10.1126/science.243.4887.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raschke, E., S. Kinne, W. B. Rossow, P. W. Stackhouse Jr., and M. Wild, 2016: Comparison of radiative energy flows in observational datasets and climate modeling. J. Appl. Meteor. Climatol., 55, 93117, https://doi.org/10.1175/JAMC-D-14-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and A. A. Lacis, 1990: Global, seasonal cloud variations from satellite radiance measurements. Part II: Cloud properties and radiative effects. J. Climate, 3, 12041253, https://doi.org/10.1175/1520-0442(1990)003<1204:GSCVFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Y.-C. Zhang, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 2. Validation and first results. J. Geophys. Res., 100, 11671197, https://doi.org/10.1029/94JD02746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Coauthors, 1985: ISCCP cloud algorithm intercomparison. J. Climate Appl. Meteor., 24, 877903, https://doi.org/10.1175/1520-0450(1985)024<0887:ICAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Z. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1 year of results. Geophys. Res. Lett., 35, L04805, https://doi.org/10.1029/2007GL032591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Z. Wang, 2012: The clouds of the middle troposphere: Composition, radiative impact, and global distribution. Surv. Geophys., 33, 677691, https://doi.org/10.1007/s10712-011-9163-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, https://doi.org/10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Shonk, J. K., R. J. Hogan, and J. Manners, 2012: Impact of improved representation of horizontal and vertical cloud structure in a climate model. Climate Dyn., 38, 23652376, https://doi.org/10.1007/s00382-011-1174-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Jr., S. K. Gupta, S. J. Cox, T. Zhang, J. C. Mikovitz, and L. M. Hinkelman, 2011: The NASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. GEWEX News, No. 20 (1), International GEWEX Project Office, Silver Spring, MD, 1012.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, https://doi.org/10.1175/JCLI-3243.1.

  • Stephens, G. L., and P. J. Webster, 1981: Clouds and climate: Sensitivity of simple systems. J. Atmos. Sci., 38, 235247, https://doi.org/10.1175/1520-0469(1981)038<0235:CACSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. J. Greenwald, 1991: The Earth’s radiation budget and its relation to atmospheric hydrology 2: Observations of cloud effects. J. Geophys. Res., 96, 15 32515 340, https://doi.org/10.1029/91JD00972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and N. B. Wood, 2007: Properties of tropical convection observed by millimeter-wave radar systems. Mon. Wea. Rev., 135, 821842, https://doi.org/10.1175/MWR3321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, https://doi.org/10.1038/ngeo1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., M. Z. Hakuba, M. Hawcroft, J. M. Haywood, A. Behrangi, J. E. Kay, and P. J. Webster, 2016: The curious nature of the hemispheric symmetry of the earth’s water and energy balances. Curr. Climate Change Rep., 2, 135147, https://doi.org/10.1007/s40641-016-0043-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. Winker, J. Pelon, C. Trepte, D. Vane, C. Yuhas, T. L’ecuyer, and M. Lebsock, 2018: CloudSat and CALIPSO within the A-Train: Ten years of actively observing the Earth system. Bull. Amer. Meteor. Soc., 99, 569581, https://doi.org/10.1175/BAMS-D-16-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., and Coauthors, 2013: Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using “A-Train” satellite observations and reanalysis data. J. Geophys. Res., 118, 27622780, https://doi.org/10.1029/2012JD018575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, W., A. Bodas-Salcedo, K.-M. Xu, and T. P. Charlock, 2010: Comparison of the tropical radiative flux and cloud radiative effect profiles in a climate model with Clouds and the Earth’s Radiant Energy System (CERES) data. J. Geophys. Res., 115, D01105, https://doi.org/10.1029/2009JD012490.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, https://doi.org/10.1109/TGRS.2008.2002030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311324, https://doi.org/10.1175/2008BAMS2634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 31293144, https://doi.org/10.1175/JCLI-D-13-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and C. Jakob, 2002: Evaluation of midlatitude cloud properties in a weather and a climate model: Dependence on dynamic regime and spatial resolution. J. Geophys. Res., 107, 4781, https://doi.org/10.1029/2002JD002259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 16651682, https://doi.org/10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., D. Vane, G. Stephens, and D. Reinke, 2012: Level 2 combined radar and lidar cloud scenario classification product process description and interface control document. JPL Rep., 22 pp.

  • Webb, M., C. Senior, S. Bony, and J.-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905922, https://doi.org/10.1007/s003820100157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., 2005: Solar radiation budgets in atmospheric model intercomparisons from a surface perspective. Geophys. Res. Lett., 32, L07704, https://doi.org/10.1029/2005GL022421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., 2008: Short-wave and long-wave surface radiation budgets in GCMs: A review based on the IPCC-AR4/CMIP3 models. Tellus, 60A, 932945, https://doi.org/10.1111/j.1600-0870.2008.00342.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, H. Gilgen, J.-J. Morcrette, and A. Slingo, 2001: Evaluation of downward longwave radiation in general circulation models. J. Climate, 14, 32273239, https://doi.org/10.1175/1520-0442(2001)014<3227:EODLRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., D. Folini, C. Schär, N. Loeb, E. G. Dutton, and G. König-Langlo, 2013: The global energy balance from a surface perspective. Climate Dyn., 40, 31073134, https://doi.org/10.1007/s00382-012-1569-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M. Held, M. Zhao, S. A. Klein, and B. J. Soden, 2006: A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity. Climate Dyn., 27, 261279, https://doi.org/10.1007/s00382-006-0138-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., T. Wong, B. A. Wielicki, L. Parker, and Z. A. Eitzen, 2005: Statistical analyses of satellite cloud object data from CERES. Part I: Methodology and preliminary results of the 1998 El Niño/2000 La Niña. J. Climate, 18, 24972514, https://doi.org/10.1175/JCLI3418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., T. Wong, S. Dong, F. Chen, S. Kato, and P. C. Taylor, 2016: Cloud object analysis of CERES Aqua observations of tropical and subtropical cloud regimes: Four-year climatology. J. Climate, 29, 16171638, https://doi.org/10.1175/JCLI-D-14-00836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., Z. Wang, and D. Liu, 2010: A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements. J. Geophys. Res., 115, D00H13, https://doi.org/10.1029/2009JD012143.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, https://doi.org/10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., P. W. Stackhouse Jr., S. K. Gupta, S. J. Cox, J. C. Mikovitz, and L. M. Hinkelman, 2013: The validation of the GEWEX SRB surface shortwave flux data products using BSRN measurements: A systematic quality control, production and application approach. J. Quant. Spectrosc. Radiat. Transf., 122, 127140, https://doi.org/10.1016/j.jqsrt.2012.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, and A. A. Lacis, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Method and sensitivity to input data uncertainties. J. Geophys. Res., 100, 11491165, https://doi.org/10.1029/94JD02747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, https://doi.org/10.1029/2003JD004457.

    • Crossref