Reassessing the Effect of Cloud Type on Earth’s Energy Balance in the Age of Active Spaceborne Observations. Part II: Atmospheric Heating

Yun Hang Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Yun Hang in
Current site
Google Scholar
PubMed
Close
,
Tristan S. L’Ecuyer Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Tristan S. L’Ecuyer in
Current site
Google Scholar
PubMed
Close
,
David S. Henderson Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by David S. Henderson in
Current site
Google Scholar
PubMed
Close
,
Alexander V. Matus Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Alexander V. Matus in
Current site
Google Scholar
PubMed
Close
, and
Zhien Wang Department of Atmospheric and Oceanic Sciences and Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Zhien Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The role of clouds in modulating vertically integrated atmospheric heating is investigated using CloudSat’s multisensor radiative flux dataset. On the global mean, clouds are found to induce a net atmospheric heating of 0.07 ± 0.08 K day−1 that derives largely from 0.06 ± 0.07 K day−1 of enhanced shortwave absorption and a small, 0.01 ± 0.04 K day−1 reduction of longwave cooling. However, this small global average longwave effect results from the near cancellation of much larger regional warming by multilayered cloud systems in the tropics and cooling from stratocumulus clouds in subtropical oceans. Clouds are observed to warm the tropical atmosphere by 0.23 K day−1 and cool the polar atmosphere by −0.13 K day−1 enhancing required zonal heat redistribution by the meridional overturning circulation. Zonal asymmetries in the occurrence of multilayered clouds that are more frequent in the Northern Hemisphere and stratocumulus that occur more frequently over the southern oceans also leads to 3 times as much cloud heating in the Northern Hemisphere (0.1 K day−1) than the Southern Hemisphere (0.04 K day−1). These findings suggest that clouds very likely make the strongest contribution to the annual mean atmospheric energy imbalance between the hemispheres (2.0 ± 3.5 PW).

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yun Hang, yhang4@wisc.edu

Abstract

The role of clouds in modulating vertically integrated atmospheric heating is investigated using CloudSat’s multisensor radiative flux dataset. On the global mean, clouds are found to induce a net atmospheric heating of 0.07 ± 0.08 K day−1 that derives largely from 0.06 ± 0.07 K day−1 of enhanced shortwave absorption and a small, 0.01 ± 0.04 K day−1 reduction of longwave cooling. However, this small global average longwave effect results from the near cancellation of much larger regional warming by multilayered cloud systems in the tropics and cooling from stratocumulus clouds in subtropical oceans. Clouds are observed to warm the tropical atmosphere by 0.23 K day−1 and cool the polar atmosphere by −0.13 K day−1 enhancing required zonal heat redistribution by the meridional overturning circulation. Zonal asymmetries in the occurrence of multilayered clouds that are more frequent in the Northern Hemisphere and stratocumulus that occur more frequently over the southern oceans also leads to 3 times as much cloud heating in the Northern Hemisphere (0.1 K day−1) than the Southern Hemisphere (0.04 K day−1). These findings suggest that clouds very likely make the strongest contribution to the annual mean atmospheric energy imbalance between the hemispheres (2.0 ± 3.5 PW).

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yun Hang, yhang4@wisc.edu
Save
  • Austin, R., 2007: Level 2b radar-only cloud water content (2B-CWC-RO) process description document. CloudSat Project Rep. 5, 26 pp., ftp://ftp.cira.colostate.edu/ftp/CloudSat/Docs/2B-CWC-RO_PDICD.P_R04.20071021.pdf.

  • Austin, R., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114, D00A23, https://doi.org/10.1029/2008JD010049.

    • Search Google Scholar
    • Export Citation
  • Cesana, G., D. Waliser, D. Henderson, T. L’Ecuyer, X. Jiang, and J.-L. Li, 2019: The vertical structure of radiative heating rates: A multimodel evaluation using A-Train satellite observations. J. Climate, 32, 15731590, https://doi.org/10.1175/JCLI-D-17-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, M. A., and J. C. Comiso, 2011: Cloud features detected by MODIS but not by CloudSat and CALIOP. Geophys. Res. Lett., 38, L24813, https://doi.org/10.1029/2011GL050063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., W. B. Rossow, and Y. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286, https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and R. P. Lawson, 2013: Evaluation of several A-Train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52, 10141030, https://doi.org/10.1175/JAMC-D-12-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. Mcgee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the last glacial maximum. J. Climate, 26, 35973618, https://doi.org/10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, https://doi.org/10.1175/JCLI-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, https://doi.org/10.1038/NGEO1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. Dessler, T. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, S.-H., and Coauthors, 2017: Cloud occurrences and cloud radiative effects (CRES) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products. J. Geophys. Res. Atmos., 122, 88528884, https://doi.org/10.1002/2017JD026725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrop, B. E., and D. L. Hartmann, 2016: The role of cloud radiative heating in determining the location of the ITCZ in aquaplanet simulations. J. Climate, 29, 27412763, https://doi.org/10.1175/JCLI-D-15-0521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and D. A. Short, 1980: On the use of earth radiation budget statistics for studies of clouds and climate. J. Atmos. Sci., 37, 12331250, https://doi.org/10.1175/1520-0469(1980)037<1233:OTUOER>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, https://doi.org/10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., C. Jakob, W. B. Rossow, G. Tselioudis, and J. Brown, 2011: Major characteristics of Southern Ocean cloud regimes and their effects on the energy budget. J. Climate, 24, 50615080, https://doi.org/10.1175/2011JCLI4052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. H. Vonder Haar, T. L’Ecuyer, and D. Henderson, 2013: Radiative heating characteristics of Earth’s cloudy atmosphere from vertically resolved active sensors. Geophys. Res. Lett., 40, 624630, https://doi.org/10.1002/grl.50145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., T. L’Ecuyer, G. Stephens, P. Partain, and M. Sekiguchi, 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853871, https://doi.org/10.1175/JAMC-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., X. Chen, D. K. Zhou, and X. Liu, 2016: An observationally based global band-by-band surface emissivity dataset for climate and weather simulations. J. Atmos. Sci., 73, 35413555, https://doi.org/10.1175/JAS-D-15-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110), 49354940, https://doi.org/10.1073/pnas.1213302110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakub, F., and B. Mayer, 2015: A three-dimensional parallel radiative transfer model for atmospheric heating rates for use in cloud resolving models—The TenStream solver. J. Quant. Spectrosc. Radiat. Transfer, 163, 6371, https://doi.org/10.1016/j.jqsrt.2015.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z., Y. Qiao, Y. Wang, Y. Fang, and W. Yi, 2011: A new parameterization of spectral and broadband ocean surface albedo. Opt. Express, 19, 26 42926 443, https://doi.org/10.1364/OE.19.026429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, E., A. Devasthale, T. L’Ecuyer, A. M. Ekman, and M. Tjernström, 2015: The vertical structure of cloud radiative heating over the Indian subcontinent during summer monsoon. Atmos. Chem. Phys., 15, 11 55711 570, https://doi.org/10.5194/acp-15-11557-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and G. S. Young, 1983: Heat and moisture budgets of tropical mesoscale anvil clouds. J. Atmos. Sci., 40, 21382147, https://doi.org/10.1175/1520-0469(1983)040<2138:HAMBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., F. G. Rose, and T. P. Charlock, 2005: Computation of domain-averaged irradiance using satellite-derived cloud properties. J. Atmos. Oceanic Technol., 22, 146164, https://doi.org/10.1175/JTECH-1694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., S. Sun-Mack, W. F. Miller, F. G. Rose, Y. Chen, P. Minnis, and B. A. Wielicki, 2010: Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J. Geophys. Res., 115, D00H28, https://doi.org/10.1029/2009JD012277.

    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, D. A. Rutan, F. G. Rose, S. Sun-Mack, W. F. Miller, and Y. Chen, 2012: Uncertainty estimate of surface irradiances computed with MODIS-, CALIPSO-, and CloudSat-derived cloud and aerosol properties. Surv. Geophys., 33, 395412, https://doi.org/10.1007/s10712-012-9179-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2003: The tropical oceanic energy budget from the TRMM perspective. Part I: Algorithm and uncertainties. J. Climate, 16, 19671985, https://doi.org/10.1175/1520-0442(2003)016<1967:TTOEBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train. Phys. Today, 63, 3641, https://doi.org/10.1063/1.3463626.

  • L’Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse, 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res., 113, D00A15, https://doi.org/10.1029/2008JD009951.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and Coauthors, 2015: The observed state of the energy budget in the early twenty-first century. J. Climate, 28, 83198346, https://doi.org/10.1175/JCLI-D-14-00556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., Y. Hang, A. V. Matus, and Z. Wang, 2019: Reassessing the effect of cloud type on Earth’s energy balance in the age of active spaceborne observations. Part I: Top of atmosphere and surface. J. Climate, 32, 62196236, https://doi.org/10.1175/JCLI-D-18-0753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J.-L., and Coauthors, 2016: Considering the radiative effects of snow on tropical Pacific Ocean radiative heating profiles in contemporary GCMs using A-Train observations. J. Geophys. Res. Atmos., 121, 16211636, https://doi.org/10.1002/2015JD023587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., D. W. Thompson, and S. Bony, 2015: The influence of atmospheric cloud radiative effects on the large-scale atmospheric circulation. J. Climate, 28, 72637278, https://doi.org/10.1175/JCLI-D-14-00825.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L., Q. Fu, H. Zhang, J. Su, Q. Yang, and Z. Sun, 2013: Upward mass fluxes in tropical upper troposphere and lower stratosphere derived from radiative transfer calculations. J. Quant. Spectrosc. Radiat. Transfer, 117, 114122, https://doi.org/10.1016/j.jqsrt.2012.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., H. Wang, A. Cheng, S. Kato, J. T. Fasullo, K.-M. Xu, and R. P. Allan, 2016: Observational constraints on atmospheric and oceanic cross-equatorial heat transports: Revisiting the precipitation asymmetry problem in climate models. Climate Dyn., 46, 32393257, https://doi.org/10.1007/s00382-015-2766-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and F. J. Wrenn, 2013: Evaluation of the hydrometeor layers in the east and west Pacific within ISCCP cloud-top pressure–optical depth bins using merged CloudSat and CALIPSO data. J. Climate, 26, 94299444, https://doi.org/10.1175/JCLI-D-12-00207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Coauthors, 2006: Cloud radiative forcing at the Atmospheric Radiation Measurement Program Climate Research Facility: 1. Technique, validation, and comparison to satellite-derived diagnostic quantities. J. Geophys. Res., 111, D11S90, https://doi.org/10.1029/2005JD005921.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, https://doi.org/10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and F. Möller, 1961: On the radiative equilibrium and heat balance of the atmosphere. Mon. Wea. Rev., 89, 503532, https://doi.org/10.1175/1520-0493(1961)089<0503:OTREAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361385, https://doi.org/10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241259, https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, https://doi.org/10.1029/2009JD013422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matus, A. V., and T. S. L’Ecuyer, 2017: The role of cloud phase in earth’s radiation budget. J. Geophys. Res. Atmos., 122, 25592578, https://doi.org/10.1002/2016JD025951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., J. H. Mather, and T. P. Ackerman, 2007: Analysis of tropical radiative heating profiles: A comparison of models and observations. J. Geophys. Res., 112, D14218, https://doi.org/10.1029/2006JD008290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGill, M. J., M. A. Vaughan, C. R. Trepte, W. D. Hart, D. L. Hlavka, D. M. Winker, and R. Kuehn, 2007: Airborne validation of spatial properties measured by the CALIPSO lidar. J. Geophys. Res., 112, D20201, https://doi.org/10.1029/2007JD008768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIlhattan, E. A., T. S. L’Ecuyer, and N. B. Miller, 2017: Observational evidence linking Arctic supercooled liquid cloud biases in CESM to snowfall processes. J. Climate, 30, 44774495, https://doi.org/10.1175/JCLI-D-16-0666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mülmenstädt, J., and Coauthors, 2018: Using CALIOP to estimate cloud-field base height and its uncertainty: The Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset. Earth Syst. Sci. Data, 10, 22792293, https://doi.org/10.5194/essd-10-2279-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, E. L., and T. S. L’Ecuyer, 2018: Global character of latent heat release in oceanic warm rain systems. J. Geophys. Res. Atmos., 123, 47974817, https://doi.org/10.1002/2017JD027844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, E. L., T. S. L’Ecuyer, S. M. Saleeby, W. Berg, S. R. Herbener, and S. C. van den Heever, 2016: Toward an algorithm for estimating latent heat release in warm rain systems. J. Atmos. Oceanic Technol., 33, 13091329, https://doi.org/10.1175/JTECH-D-15-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and W. Rossow, 2011: The cloud radiative effects of International Satellite Cloud Climatology Project weather states. J. Geophys. Res., 116, D12202, https://doi.org/10.1029/2010JD015472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, D. Lee, and S. Kato, 2016: Radiative effects of global MODIS cloud regimes. J. Geophys. Res., 121, 22992317, https://doi.org/10.1002/2015JD024502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, and D. Lee, 2017: New insights about cloud vertical structure from CloudSat and CALIPSO observations. J. Geophys. Res. Atmos., 122, 92809300, https://doi.org/10.1002/2017JD026629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, https://doi.org/10.1109/TGRS.2002.808301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2014: Reconciling ground-based and space-based estimates of the frequency of occurrence and radiative effect of clouds around Darwin, Australia. J. Appl. Meteor. Climatol., 53, 456478, https://doi.org/10.1175/JAMC-D-13-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., 1987: The role of earth radiation budget studies in climate and general circulation research. J. Geophys. Res., 92, 40754095, https://doi.org/10.1029/JD092iD04p04075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., D. A. Dazlich, and T. G. Corsetti, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46, 19431970, https://doi.org/10.1175/1520-0469(1989)046<1943:IARCAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J.-F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325, https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and A. A. Lacis, 1990: Global, seasonal cloud variations from satellite radiance measurements. Part II: Cloud properties and radiative effects. J. Climate, 3, 12041253, https://doi.org/10.1175/1520-0442(1990)003<1204:GSCVFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Y.-C. Zhang, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 2. validation and first results. J. Geophys. Res., 100, 11671197, https://doi.org/10.1029/94JD02746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabatini, R. R., and V. E. Suomi, 1962: On the possibility of atmospheric infrared cooling estimates from satellite observations. J. Atmos. Sci., 19, 349350, https://doi.org/10.1175/1520-0469(1962)019<0349:OTPOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195, https://doi.org/10.1175/1520-0450(2004)043<0182:ALMAPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and S. C. van den Heever, 2013: Developments in the CSU-RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteor. Climatol., 52, 26012622, https://doi.org/10.1175/JAMC-D-12-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Z. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett., 35, L04805, https://doi.org/10.1029/2007GL032591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Z. Wang, 2012: The clouds of the middle troposphere: Composition, radiative impact, and global distribution. Surv. Geophys., 33, 677691, https://doi.org/10.1007/s10712-011-9163-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, https://doi.org/10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., and J. Slingo, 1988: The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quart. J. Roy. Meteor. Soc., 114, 10271062, https://doi.org/10.1002/qj.49711448209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, J., and A. Slingo, 1991: The response of a general circulation model to cloud longwave radiative forcing. II: Further studies. Quart. J. Roy. Meteor. Soc., 117, 333364, https://doi.org/10.1002/qj.49711749805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, https://doi.org/10.1175/JCLI3799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohn, B.-J., and E. A. Smith, 1992: The significance of cloud–radiative forcing to the general circulation on climate time scales—A satellite interpretation. J. Atmos. Sci., 49, 845860, https://doi.org/10.1175/1520-0469(1992)049<0845:TSOCFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18 237273, https://doi.org/10.1175/JCLI-3243.1.

  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155, https://doi.org/10.1175/2008JCLI2144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. L’Ecuyer, 2015: The earth’s energy balance. Atmos. Res., 166, 195203, https://doi.org/10.1016/j.atmosres.2015.06.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, https://doi.org/10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., M. Wild, P. W. Stackhouse Jr., T. L’Ecuyer, S. Kato, and D. S. Henderson, 2012a: The global character of the flux of downward longwave radiation. J. Climate, 25 23292340, https://doi.org/10.1175/JCLI-D-11-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012b: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, https://doi.org/10.1038/ngeo1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., M. Z. Hakuba, M. Hawcroft, J. M. Haywood, A. Behrangi, J. E. Kay, and P. J. Webster, 2016: The curious nature of the hemispheric symmetry of the earth’s water and energy balances. Curr. Climate Change Rep., 2 135147, https://doi.org/10.1007/s40641-016-0043-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., and Coauthors, 2013: Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using “A-Train” satellite observations and reanalysis data. J. Geophys. Res., 118, 27622780, https://doi.org/10.1029/2012JD018575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, https://doi.org/10.1109/TGRS.2008.2002030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454, https://doi.org/10.1175/2009JCLI3152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311324, https://doi.org/10.1175/2008BAMS2634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Tricht, K., and Coauthors, 2016: Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun., 7, 10266, https://doi.org/10.1038/ncomms10266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonder Haar, T. H., and V. E. Suomi, 1971: Measurements of the earth’s radiation budget from satellites during a five-year period. Part I: Extended time and space means. J. Atmos. Sci., 28, 305314, https://doi.org/10.1175/1520-0469(1971)028<0305:MOTERB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P., and G. Stephens, 1984: Cloud–radiation interaction and the climate problem. The Global Climate, J. Houghton, Ed., Cambridge University Press, 63–78.

  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., J. R. Pelon, and M. P. McCormick, 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Proc. SPIE, 4893, 111, https://doi.org/10.1117/12.466539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D., H. Chepfer, V. Noel, and X. Cai, 2017: Observational constraints on cloud feedbacks: The role of active satellite sensors. Surv. Geophys., 38, 14831508, https://doi.org/10.1007/s10712-017-9452-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 43994423, https://doi.org/10.1175/2008JCLI2172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zatko, M. C., and S. G. Warren, 2015: East Antarctic sea ice in spring: Spectral albedo of snow, nilas, frost flowers and slush, and light-absorbing impurities in snow. Ann. Glaciol., 56, 5364, https://doi.org/10.3189/2015AoG69A574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26, 50075027, https://doi.org/10.1175/JCLI-D-12-00555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, https://doi.org/10.1029/2003JD004457.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1177 345 21
PDF Downloads 975 260 15