Month-to-Month Variability of Winter Temperature over Northeast China Linked to Sea Ice over the Davis Strait–Baffin Bay and the Barents–Kara Sea

Haixia Dai Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of the Chinese Academy of Sciences, Beijing, China

Search for other papers by Haixia Dai in
Current site
Google Scholar
PubMed
Close
,
Ke Fan Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of the Chinese Academy of Sciences, Beijing,China

Search for other papers by Ke Fan in
Current site
Google Scholar
PubMed
Close
, and
Jiping Liu Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Jiping Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study focuses on the month-to-month variability of winter temperature anomalies over Northeast China (NECTA), especially the out-of-phase change between December and January–February (colder than normal in December and warmer than normal in January–February, and vice versa), which accounts for 30% of the past 37 years (1980–2016). Our analysis shows that the variability of sea ice concentration (SIC) in the preceding November over the Davis Strait–Baffin Bay (SIC_DSBB) mainly affects NECTA in December, whereas the SIC over the Barents–Kara Sea (SIC_BKS) significantly impacts NECTA in January–February. A possible reason for the different effects of SIC_DSBB and SIC_BKS on NECTA is that the month-to-month increments (here called DM) of SIC over these two areas between October and November are different. A smaller DM of SIC_DSBB in November can generate eastward-propagating Rossby waves toward East Asia, whereas a larger DM of SIC_BKS can affect upward-propagating stationary Rossby waves toward the stratosphere in November. Less than normal SIC_DSBB in November corresponds to a negative phase of the sea surface temperature tripole pattern over the North Atlantic, which contributes to a negative phase of the North Atlantic Oscillation (NAO)-like geopotential height anomalies via the eddy-feedback mechanism, ultimately favoring cold conditions over Northeast China. However, positive November SIC_BKS anomalies can suppress upward-propagating Rossby waves that originate from the troposphere in November, strengthening the stratospheric polar vortex and leading to a positive phase of an Arctic Oscillation (AO)-like pattern in the stratosphere. Subsequently, these stratospheric anomalies propagate downward, causing the AO-like pattern in the troposphere in January–February, favoring warm conditions in Northeast China, and vice versa.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ke Fan, fanke@mail.iap.ac.cn

Abstract

This study focuses on the month-to-month variability of winter temperature anomalies over Northeast China (NECTA), especially the out-of-phase change between December and January–February (colder than normal in December and warmer than normal in January–February, and vice versa), which accounts for 30% of the past 37 years (1980–2016). Our analysis shows that the variability of sea ice concentration (SIC) in the preceding November over the Davis Strait–Baffin Bay (SIC_DSBB) mainly affects NECTA in December, whereas the SIC over the Barents–Kara Sea (SIC_BKS) significantly impacts NECTA in January–February. A possible reason for the different effects of SIC_DSBB and SIC_BKS on NECTA is that the month-to-month increments (here called DM) of SIC over these two areas between October and November are different. A smaller DM of SIC_DSBB in November can generate eastward-propagating Rossby waves toward East Asia, whereas a larger DM of SIC_BKS can affect upward-propagating stationary Rossby waves toward the stratosphere in November. Less than normal SIC_DSBB in November corresponds to a negative phase of the sea surface temperature tripole pattern over the North Atlantic, which contributes to a negative phase of the North Atlantic Oscillation (NAO)-like geopotential height anomalies via the eddy-feedback mechanism, ultimately favoring cold conditions over Northeast China. However, positive November SIC_BKS anomalies can suppress upward-propagating Rossby waves that originate from the troposphere in November, strengthening the stratospheric polar vortex and leading to a positive phase of an Arctic Oscillation (AO)-like pattern in the stratosphere. Subsequently, these stratospheric anomalies propagate downward, causing the AO-like pattern in the troposphere in January–February, favoring warm conditions in Northeast China, and vice versa.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ke Fan, fanke@mail.iap.ac.cn
Save
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballinger, T. J., E. Hanna, R. J. Hall, J. Miller, M. H. Ribergaard, and J. L. Høyer, 2018: Greenland coastal air temperatures linked to Baffin Bay and Greenland Sea ice conditions during autumn through regional blocking patterns. Climate Dyn., 50, 83100, https://doi.org/10.1007/s00382-017-3583-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., and M.-M. Lu, 2012: Intraseasonal predictability of Siberian high and East Asian winter monsoon and its interdecadal variability. J. Climate, 25, 17731778, https://doi.org/10.1175/JCLI-D-11-00500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., K. Wei, L. Wang, and Q. Zhou, 2013: Climate variability and mechanisms of the East Asian winter monsoon and the impact from the stratosphere (in Chinese). Chin. J. Atmos. Sci., 37, 425438.

    • Search Google Scholar
    • Export Citation
  • Chen, X., and D. Luo, 2017: Arctic sea ice decline and continental cold anomalies: Upstream and downstream effects of Greenland blocking. Geophys. Res. Lett., 44, 34113419, https://doi.org/10.1002/2016GL072387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., R. Wu, and W. Chen, 2014: Impacts of autumn Arctic sea ice concentration changes on the East Asian winter monsoon variability. J. Climate, 27, 54335450, https://doi.org/10.1175/JCLI-D-13-00731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, H., K. Fan, and B. Tian, 2018: A hybrid downscaling model for winter temperature over northeast China. Int. J. Climatol., 38, e349e363, https://doi.org/10.1002/joc.5376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1968: Planetary Rossby waves propagating vertically through weak westerly wind wave guides. J. Atmos. Sci., 25, 9841002, https://doi.org/10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and T. N. Krishnamurti, 1987: Heat budget of the Siberian high and the winter monsoon. Mon. Wea. Rev., 115, 24282449, https://doi.org/10.1175/1520-0493(1987)115<2428:HBOTSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and Coauthors, 2014: Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. J. Meteor. Res., 28, 693713, https://doi.org/10.1007/s13351-014-4046-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 123.

  • Fan, K., H. Wang, and Y.-J. Choi, 2008: A physically-based statistical forecast model for the middle-lower reaches of the Yangtze River Valley summer rainfall. Chin. Sci. Bull., 53, 602609, https://doi.org/10.1007/s11434-008-0083-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, K., Z. Xie, H. Wang, Z. Xu, and J. Liu, 2018: Frequency of spring dust weather in North China linked to sea ice variability in the Barents Sea. Climate Dyn., 51, 44394450, https://doi.org/10.1007/S00382-016-3515-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., and Coauthors, 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92114, https://doi.org/10.1007/s00376-014-0009-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., C. Frankignoul, G. Gastineau, and A. de la Cámara, 2015: On the predictability of the winter Euro-Atlantic climate: Lagged influence of autumn Arctic sea ice. J. Climate, 28, 51955216, https://doi.org/10.1175/JCLI-D-14-00472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., and Coauthors, 2017: Multi-model assessment of linkages between eastern Arctic sea-ice variability and the Euro-Atlantic atmospheric circulation in current climate. Climate Dyn., 49, 24072429, https://doi.org/10.1007/s00382-016-3454-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, X., W. Zhang, M. F. Stuecker, and F.-F. Jin, 2017: Strong sub-seasonal wintertime cooling over East Asia and northern Europe associated with super El Niño events. Sci. Rep., 7, 3770, https://doi.org/10.1038/s41598-017-03977-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., Y. Gao, F. Li, H. Wang, and Y. He, 2017: Impact of Arctic Oscillation on the East Asian climate: A review. Earth Sci. Rev., 164, 4862, https://doi.org/10.1016/j.earscirev.2016.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., K. Yamazaki, H. Nakamura, and K. Takeuchi, 1999: Dynamic and thermodynamic characteristics of atmospheric response to anomalous sea-ice extent in the Sea of Okhotsk. J. Climate, 12, 33473358, https://doi.org/10.1175/1520-0442(1999)012<3347:DATCOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, C., S. Yang, and Q. Wu, 2015: An optimal index for measuring the effect of East Asian winter monsoon on China winter temperature. Climate Dyn., 45, 25712589, https://doi.org/10.1007/s00382-015-2493-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Climate, 25, 25612568, https://doi.org/10.1175/JCLI-D-11-00449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B. M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon , 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. P., M. Hell, and N. Keenlyside, 2016: Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Climate Dyn., 46, 11851195, https://doi.org/10.1007/s00382-015-2639-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., and K. Kodera, 1999: Role of planetary waves in the stratosphere–troposphere coupled variability in the Northern Hemisphere winter. Geophys. Res. Lett., 26, 23752378, https://doi.org/10.1029/1999GL900507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and S. Yang, 2010: A dynamical index for the East Asian winter monsoon. J. Climate, 23, 42554262, https://doi.org/10.1175/2010JCLI3375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, https://doi.org/10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., and Coauthors, 2010: Time–frequency characteristics of regional climate over northeast China and their relationships with atmospheric circulation patterns. J. Climate, 23, 49564972, https://doi.org/10.1175/2010JCLI3554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mysak, L. A., R. G. Ingram, J. Wang, and A. van der Baaren, 1996: The anomalous sea-ice extent in Hudson Bay, Baffin Bay and the Labrador Sea during three simultaneous NAO and ENSO episodes. Atmos.–Ocean, 34, 313343, https://doi.org/10.1080/07055900.1996.9649567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res. Atmos., 120, 32093227, https://doi.org/10.1002/2014JD022848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, Y. Tomikawa, and J. Ukita, 2016: The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys. Res. Lett., 43, 34943501, https://doi.org/10.1002/2016GL068330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Outten, S. D., and I. Esau, 2012: A link between Arctic sea ice and recent cooling trends over Eurasia. Climatic Change, 110, 10691075, https://doi.org/10.1007/s10584-011-0334-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., S. Lee, and S. B. Feldstein, 2015: Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Climate, 28, 40274033, https://doi.org/10.1175/JCLI-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 13931408, https://doi.org/10.1175/1520-0442(1999)012<1393:MDTART>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004, https://doi.org/10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, https://doi.org/10.1029/2009JD013568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., J. Inoue, and M. Watanabe, 2014: Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett., 9, 084009, https://doi.org/10.1088/1748-9326/9/8/084009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2017: Simulated atmospheric response to regional and pan-Arctic sea ice loss. J. Climate, 30, 39453962, https://doi.org/10.1175/JCLI-D-16-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semenov, V. A., and M. Latif, 2015: Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966–2012. Environ. Res. Lett., 10, 054020, https://doi.org/10.1088/1748-9326/10/5/054020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D., Q. Li, Y. Liu, Z. Wang, Y. Yuan, and D. Wang, 2014: Possible causes for the anomalous weak East Asian winter monsoon in 2013/2014. Meteor. Mon., 40, 891897.

    • Search Google Scholar
    • Export Citation
  • Si, D., L. Ma, P. Wang, Y. Wang, Y. Nie, and L. Sun, 2016: Anomalous activity of Arctic Oscillation in winter 2015/2016 and its impact on temperature in China. Meteor. Mon., 42, 892897.

    • Search Google Scholar
    • Export Citation
  • Stern, H. L., and M. P. Heide-Jørgensen, 2016: Trends and variability of sea ice in Baffin Bay and Davis Strait, 1953–2001. Polar Res., 22, 1118, https://doi.org/10.3402/polar.v22i1.6438.

    • Search Google Scholar
    • Export Citation
  • Sun, C., S. Yang, W. Li, R. Zhang, and R. Wu, 2016: Interannual variations of the dominant modes of East Asian winter monsoon and possible links to Arctic sea ice. Climate Dyn., 47, 481496, https://doi.org/10.1007/s00382-015-2851-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 78247845, https://doi.org/10.1175/JCLI-D-15-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., Z. Bing, S. Chenghu, Y. Yuan, L. Yanju, and W. Pengling, 2013: Features and possible causes for East Asian winter monsoon in 2012/2013. Meteor. Mon., 39, 930937.

    • Search Google Scholar
    • Export Citation
  • Wang, D., T. Cui, D. Si, X. Shao, Q. Li, and C. Sun, 2015: Features and possible causes for East Asian winter monsoon in 2014/2015. Meteor. Mon., 41, 907914.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and S. He, 2012: Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chin. Sci. Bull., 57, 35353540, https://doi.org/10.1007/s11434-012-5285-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and Y. Guo, 2004: Possible impacts of Barents Sea ice on the Eurasian atmospheric circulation and the rainfall of East China in the beginning of summer. Adv. Atmos. Sci., 21, 662674, https://doi.org/10.1007/BF02915733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., L. A. Mysak, and R. G. Ingram, 1994: Interannual variability of sea-ice cover in Hudson Bay, Baffin Bay and the Labrador Sea. Atmos.–Ocean, 32, 421447, https://doi.org/10.1080/07055900.1994.9649505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2010: Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys. Res. Lett., 37, L09707, https://doi.org/10.1029/2010GL042659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., and J. Wang, 2002: Winter Arctic Oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29, 1897, https://doi.org/10.1029/2002GL015373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., R. Huang, and D. Gao, 1999: Impact of variation of sea-ice extent in the Kara Sea and the Barents Seas in winter on the winter monsoon over East Asia (in Chinese). Chin. J. Atmos. Sci., 23, 267275.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Su, and R. Zhang, 2011: Effects of autumn–winter Arctic sea ice on winter Siberian high. Chin. Sci. Bull., 56, 32203228, https://doi.org/10.1007/s11434-011-4696-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., R. Zhang, R. D’Arrigo, and J. Su, 2013: On the relationship between winter sea ice and summer atmospheric circulation over Eurasia. J. Climate, 26, 55235536, https://doi.org/10.1175/JCLI-D-12-00524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Q., and X. Zhang, 2010: Observed forcing-feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J. Geophys. Res., 115, D14119, https://doi.org/10.1029/2009JD013574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., and B. Wu, 2013: Interdecadal variations of the East Asian winter surface air temperature and possible causes. Chin. Sci. Bull., 58, 39693977, https://doi.org/10.1007/s11434-013-5911-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., K. Lau, and K. Kim, 2002: Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15, 306325, https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., and W. Song, 2018: Northern Hemisphere atmospheric circulation characteristics in 2017/2018 winter and its impact on weather and climate in China. Meteor. Mon., 44, 969976.

    • Search Google Scholar
    • Export Citation
  • Zhuang, Y., J. Zhang, and L. Wang, 2018: Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations. Theor. Appl. Climatol., 132, 12611273, https://doi.org/10.1007/s00704-017-2166-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, J., H. Ren, B. Wu, and W. Li, 2016: Predictability of winter temperature in China from previous autumn Arctic sea ice. Climate Dyn., 47, 23312343, https://doi.org/10.1007/s00382-015-2966-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 698 224 6
PDF Downloads 756 180 6