Migratory Tropical Cyclones in the South China Sea Modulated by Intraseasonal Oscillations and Climatological Circulations

Jau-Ming Chen Department of Maritime Information and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan

Search for other papers by Jau-Ming Chen in
Current site
Google Scholar
PubMed
Close
,
Ching-Hsuan Wu Department of Atmospheric Science, National Taiwan University, Taipei, Taiwan

Search for other papers by Ching-Hsuan Wu in
Current site
Google Scholar
PubMed
Close
,
Jianyun Gao Fujian Institute of Meteorological Sciences, Fuzhou, China

Search for other papers by Jianyun Gao in
Current site
Google Scholar
PubMed
Close
,
Pei-Hsuan Chung Department of History and Geography, University of Taipei, Taipei, Taiwan

Search for other papers by Pei-Hsuan Chung in
Current site
Google Scholar
PubMed
Close
, and
Chung-Hsiung Sui Department of Atmospheric Science, National Taiwan University, Taipei, Taiwan

Search for other papers by Chung-Hsiung Sui in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study focuses on the migratory tropical cyclones (TCs) that form in the western North Pacific (WNP) and move into the South China Sea (SCS). Their movements are found to be modulated differently by intraseasonal oscillations (ISOs) and climatological circulations through the TC-active months. The modulating processes of climatological circulations vary from a westward intensifying western Pacific subtropical high (WPSH) in July and August to a southeastward extending monsoon trough (MT) in September, and a strengthening equatorial trough (ET) in October and November. In July and August, enhanced tropical ISO convections in the SCS are accompanied by a 30–60-day anomalous anticyclone to the northeast of the SCS. The migratory TCs move along the southern peripheries of this anomalous anticyclone and the WPSH into the SCS. In September, enhanced ISO convections in the SCS coincide with a meridional 30–60-day circulation pair with an anomalous anticyclone to the north of 20°N and an anomalous cyclone to the south. TCs move in between this meridional 30–60-day circulation pair and the northern periphery of the MT toward the SCS. In October and November, enhanced ISO convections in the SCS and WNP coexist with an overlying 30–60-day anomalous cyclone and an intensified ET. The migratory TCs move along the northern sections of this 30–60-day anomalous cyclone and the ET toward the SCS. With a different track, TCs recurving northward from the tropical WNP into the region east of Taiwan are modulated by completely different variability features of the 30–60-day ISO and climatological circulations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chung-Hsiung Sui, sui@as.ntu.edu.tw

Abstract

This study focuses on the migratory tropical cyclones (TCs) that form in the western North Pacific (WNP) and move into the South China Sea (SCS). Their movements are found to be modulated differently by intraseasonal oscillations (ISOs) and climatological circulations through the TC-active months. The modulating processes of climatological circulations vary from a westward intensifying western Pacific subtropical high (WPSH) in July and August to a southeastward extending monsoon trough (MT) in September, and a strengthening equatorial trough (ET) in October and November. In July and August, enhanced tropical ISO convections in the SCS are accompanied by a 30–60-day anomalous anticyclone to the northeast of the SCS. The migratory TCs move along the southern peripheries of this anomalous anticyclone and the WPSH into the SCS. In September, enhanced ISO convections in the SCS coincide with a meridional 30–60-day circulation pair with an anomalous anticyclone to the north of 20°N and an anomalous cyclone to the south. TCs move in between this meridional 30–60-day circulation pair and the northern periphery of the MT toward the SCS. In October and November, enhanced ISO convections in the SCS and WNP coexist with an overlying 30–60-day anomalous cyclone and an intensified ET. The migratory TCs move along the northern sections of this 30–60-day anomalous cyclone and the ET toward the SCS. With a different track, TCs recurving northward from the tropical WNP into the region east of Taiwan are modulated by completely different variability features of the 30–60-day ISO and climatological circulations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chung-Hsiung Sui, sui@as.ntu.edu.tw
Save
  • Aiyyer, A., A. Mekonnen, and C. J. Schreck, 2012: Projection of tropical cyclones on wavenumber–frequency-filtered equatorial waves. J. Climate, 25, 36533658, https://doi.org/10.1175/JCLI-D-11-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., and L. M. Leslie, 2009: Links between tropical cyclone activity and Madden–Julian oscillation phase in the North Atlantic and northeast Pacific basins. Mon. Wea. Rev., 137, 727744, https://doi.org/10.1175/2008MWR2602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, M., T. Li, X. Shen, and M. Peng, 2015: To what extent the presence of real-strength tropical cyclones influences the estimation of atmospheric intraseasonal oscillation intensity? Atmos. Sci. Lett., 16, 438444, https://doi.org/10.1002/asl.579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007: Cluster analysis of typhoon tracks: Part I: General properties. J. Climate, 20, 36353653, https://doi.org/10.1175/JCLI4188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972, https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., and G. T.-J. Chen, 1995: Tropical circulation associated with southwest monsoon onset and westerly surges over the South China Sea. Mon. Wea. Rev., 123, 32543267, https://doi.org/10.1175/1520-0493(1995)123<3254:TCAWSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., 1994: Large-scale circulation associated with the East Asian summer monsoon and the mei-yu over South China and Taiwan. J. Meteor. Soc. Japan, 72, 959983, https://doi.org/10.2151/jmsj1965.72.6_959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-M., P.-H. Tan, L. Wu, J.-S. Liu, and H.-S. Chen, 2017: Climatological analysis of passage-type tropical cyclones from the western North Pacific into the South China Sea. Terr. Atmos. Oceanic Sci., 28, 327343, https://doi.org/10.3319/TAO.2016.10.04.02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-M., C.-H. Wu, P.-H. Chung, and C.-H. Sui, 2018a: Influence of intraseasonal–interannual oscillations on tropical cyclone genesis in the western North Pacific. J. Climate, 31, 49494961, https://doi.org/10.1175/JCLI-D-17-0601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-M., P.-H. Tan, L. Wu, H.-S. Chen, J.-S. Liu, and C.-F. Shih, 2018b: Interannual variability of summer tropical cyclone rainfall in the western North Pacific depicted by CFSR and associated large-scale processes and ISO modulations. J. Climate, 31, 17711787, https://doi.org/10.1175/JCLI-D-16-0805.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., and J.-M. Chen, 1995: An observational study of the South China Sea monsoon during the 1979 summer: Onset and life cycle. Mon. Wea. Rev., 123, 22952318, https://doi.org/10.1175/1520-0493(1995)123<2295:AOSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., M.-C. Yen, and S.-P. Weng, 2000: Interaction between the summer monsoon in East Asia and the South China Sea: Intraseasonal monsoon mode. J. Atmos. Sci., 57, 13731392, https://doi.org/10.1175/1520-0469(2000)057<1373:IBTSMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-Y. Wang, and M.-C. Yen, 2006: Interannual variation of the tropical cyclone activity over the western North Pacific. J. Climate, 19, 57095720, https://doi.org/10.1175/JCLI3934.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-Y. Wang, M.-C. Yen, and A. Clark, 2009: Impact of the intraseasonal variability of the western North Pacific large-scale circulation on tropical cyclone tracks. Wea. Forecasting, 24, 646666, https://doi.org/10.1175/2008WAF2222186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, Y., and K.-J. Ha, 2018: Subseasonal shift in tropical cyclone genesis over the western North Pacific in 2013. Climate Dyn., 51, 44514467, https://doi.org/10.1007/s00382-017-3926-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., X. Zhao, C.-H. Ho, H.-S. Kim, M.-M. Lu, and J.-H. Kim, 2010: Bayesian forecasting of seasonal typhoon activity: A track-pattern-oriented categorization approach for Taiwan. J. Climate, 23, 66546668, https://doi.org/10.1175/2010JCLI3710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., 1994: Monsoon over China. Kluwer Academic, 419 pp.

  • Ding, Y. H., 2007: The variability of the Asian summer monsoon. J. Meteor. Soc. Japan, 85B, 2154, https://doi.org/10.2151/jmsj.85B.21.

  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., R. Wu, J. Chen, and Z. Wen, 2013: Factors for interannual variations of September–October rainfall in Hainan, China. J. Climate, 26, 89628978, https://doi.org/10.1175/JCLI-D-12-00728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and T. Li, 2011: Factors controlling multiple tropical cyclone events in the western North Pacific. Mon. Wea. Rev., 139, 885894, https://doi.org/10.1175/2010MWR3340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and T. Li, 2012: Interannual variation of multiple tropical cyclone events in the western North Pacific. Adv. Atmos. Sci., 29, 12791291, https://doi.org/10.1007/s00376-012-1031-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goh, A. Z.-C., and J. C. L. Chan, 2010: Interannual and interdecadal variations of tropical cyclone activity in the South China Sea. Int. J. Climatol., 30, 827843, https://doi.org/10.1002/JOC.1943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, J. D., A. J. Matthews, and D. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129, 29702982, https://doi.org/10.1175/1520-0493(2001)129<2970:TMOTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon. Wea. Rev., 119, 14481468, https://doi.org/10.1175/1520-0493(1991)119<1448:TCTCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. L. Michelsen, and S. A. Klein, 1992: Seasonal variations of tropical intraseasonal oscillations: A 20–25-day oscillation in the western Pacific. J. Atmos. Sci., 49, 12771289, https://doi.org/10.1175/1520-0469(1992)049<1277:SVOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., J.-J. Baik, J.-H. Kim, D.-Y. Gong, and C.-H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 17671776, https://doi.org/10.1175/1520-0442(2004)017<1767:ICISTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., 2005: East Asian and western North Pacific summer monsoon region. Intraseasonal Variability in the Atmosphere–Ocean System, W. K. M. Lau and D. E. Waliser, Eds., Springer-Praxis, 65–98.

  • Hsu, H.-H., and C.-H. Weng, 2001: Northwestward propagation of the intraseasonal oscillation in the western North Pacific during the boreal summer: Structure and mechanism. J. Climate, 14, 38343850, https://doi.org/10.1175/1520-0442(2001)014<3834:NPOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., C.-H. Hung, A.-K. Lo, C.-C. Wu, and C.-W. Hung, 2008: Influence of tropical cyclones on the estimation of climate variability in the tropical western North Pacific. J. Climate, 21, 29602975, https://doi.org/10.1175/2007JCLI1847.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927941, https://doi.org/10.1175/2010JCLI3833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., C. Chou, and R. Huang, 2011: Seasonal modulation of tropical intraseasonal oscillations on tropical cyclone geneses in the western North Pacific. J. Climate, 24, 63396352, https://doi.org/10.1175/2011JCLI4200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., C.-H. Ho, H.-S. Kim, C.-H. Sui, and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Climate, 21, 11711191, https://doi.org/10.1175/2007JCLI1493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-S., C.-Y. Li, and W. Zhou, 2012: Effects of the Pacific–Japan teleconnection pattern on tropical cyclone activity and extreme precipitation events over the Korean peninsula. J. Geophys. Res., 117, D18109, https://doi.org/10.1029/2012JD017677.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P., 2014: The Madden–Julian oscillation’s impacts on worldwide tropical cyclone activity. J. Climate, 27, 23172330, https://doi.org/10.1175/JCLI-D-13-00483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ko, K.-C., and H.-H. Hsu, 2006: Sub-monthly circulation features associated with tropical cyclone track over the East Asian monsoon area during July–August season. J. Meteor. Soc. Japan, 84, 871889, https://doi.org/10.2151/jmsj.84.871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ko, K.-C., and H.-H. Hsu, 2009: ISO modulation on the submonthly wave pattern and recurving tropical cyclones in the tropical western North Pacific. J. Climate, 22, 582599, https://doi.org/10.1175/2008JCLI2282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M., 1996: Specific tropical cyclone track types and unusual tropical cyclone motions associated with a reverse-oriented monsoon trough in the western North Pacific. Wea. Forecasting, 11, 170186, https://doi.org/10.1175/1520-0434(1996)011<0170:STCTTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2013: Modulation of western North Pacific tropical cyclone activity by the ISO. Part II: Tracks and landfall. J. Climate, 26, 29192930, https://doi.org/10.1175/JCLI-D-12-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., W. Zhou, J. C. L. Chan, and P. Huang, 2012: Asymmetric modulation of the western North Pacific cyclogenesis by the Madden–Julian oscillation under ENSO conditions. J. Climate, 25, 53745385, https://doi.org/10.1175/JCLI-D-11-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., W. Zhou, and T. Li, 2014: Influences of the Pacific–Japan teleconnection pattern on synoptic-scale variability in the western North Pacific. J. Climate, 27, 140154, https://doi.org/10.1175/JCLI-D-13-00183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., W. Zhou, C. M. Shun, and T. C. Lee, 2017: Change in destructiveness of landfalling tropical cyclones over China in recent decades. J. Climate, 30, 33673379, https://doi.org/10.1175/JCLI-D-16-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Oceanic Sci., 16, 285314, https://doi.org/10.3319/TAO.2005.16.2.285(A).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401412, https://doi.org/10.2151/jmsj1965.72.3_401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1962: Large-scale interactions. The Sea: Ideas and Observations, Vol. 1, Interscience Publishers, 88–294.

  • Mao, J., and C. L. Chan, 2005: Intraseasonal variability of the South China Sea summer monsoon. J. Climate, 18, 23882402, https://doi.org/10.1175/JCLI3395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., and K. Rajendran, 2007: Relationship between tropospheric circulation over the western North Pacific and tropical cyclone approach/landfall on Japan. J. Meteor. Soc. Japan, 85, 101114, https://doi.org/10.2151/jmsj.85.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, O.-H., and F. Xue, 2011: Two northward jumps of the summertime western Pacific subtropical high and their associations with the tropical SST anomalies. Atmos. Oceanic Sci. Lett., 4, 98102, https://doi.org/10.1080/16742834.2011.11446910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., P.-H. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett., 34, L11701, https://doi.org/10.1029/2006GL029204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, P.-H., J.-Y. Tu, L. Wu, H.-S. Chen, and J.-M. Chen, 2019: Asymmetric relationships between El Niño–Southern Oscillation and entrance tropical cyclones in the South China Sea during fall. Int. J. Climatol., 39, 18721888, https://doi.org/10.1002/joc.5921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsou, C.-H., P.-C. Hsu, W.-S. Kau, and H.-H. Hsu, 2005: Northward and northwestward propagation of 30–60 day oscillation in the tropical and extratropical western North Pacific. J. Meteor. Soc. Japan, 83, 711726, https://doi.org/10.2151/jmsj.83.711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, J.-Y., and J.-M. Chen, 2019: Large-scale indices for assessing typhoon activity around Taiwan. Int. J. Climatol., 39, 921933, https://doi.org/10.1002/joc.5852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., J. Su, Y. Ding, and D. Chen, 2007: Tropical cyclone genesis over the South China Sea. J. Mar. Syst., 68, 318326, https://doi.org/10.1016/j.jmarsys.2006.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and C. Wang, 2015: Has the western Pacific subtropical high extended westward since the late 1970s? J. Climate, 28, 54065413, https://doi.org/10.1175/JCLI-D-14-00618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and M. Takahashi, 2018: Contributions of tropical waves to tropical cyclone genesis over the western North Pacific. Climate Dyn., 50, 46354649, https://doi.org/10.1007/s00382-017-3895-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Wen, R. Huang, and R. Wu, 2012: Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Mon. Wea. Rev., 140, 140150, https://doi.org/10.1175/MWR-D-11-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., 2002: Processes for the northeastward advance of the summer monsoon over the western North Pacific. J. Meteor. Soc. Japan, 80, 6783, https://doi.org/10.2151/jmsj.80.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, H., P.-C. Hsu, and Y. Qian, 2018: Close linkage between quasi-biweekly oscillation and tropical cyclone intensification over the western North Pacific. Atmos. Sci. Lett., 19, e826, https://doi.org/10.1002/asl.826.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 340 103 10
PDF Downloads 330 77 2