Attribution of Global Monsoon Response to the Last Glacial Maximum Forcings

Jian Cao Earth System Modeling Center/Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jian Cao in
Current site
Google Scholar
PubMed
Close
,
Bin Wang Earth System Modeling Center/Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China, and Department of Atmospheric Sciences and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
, and
Libin Ma Earth System Modeling Center/Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Libin Ma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Investigation of global monsoon (GM) responses to external forcings is instrumental for understanding its formation mechanism and projected future changes. Coupled climate model experiments are performed to assess how the individual and full Last Glacial Maximum (LGM) forcings change GM precipitation. Under the full LGM forcing, the annual and local summer-mean GM precipitation are reduced by 8.5% and 10.8%, respectively, compared to the results in the preindustrial control run; and the reduction of Northern Hemisphere (NH) summer monsoon (NHSM) precipitation is twice as large as its Southern Hemisphere (SH) counterpart (SHSM). The NH–SH asymmetric response is mainly caused by the monsoon circulation change–induced moisture convergence rather than the reduction of moisture content, but the root cause is the continental ice sheet forcing. The NHSM precipitation changes dramatically differ among various single-forcing experiments, while this is not the case for their SH counterparts. The moisture budget analysis indicates the NHSM is dynamically oriented, but SHSM is thermodynamically oriented. The markedly different NHSM circulation changes are caused by different forcing-induced sea surface temperature (SST) patterns, including the North Atlantic cooling pattern forced by the continental ice sheet, the mega–La Niña–like pattern resulting from the greenhouse gas forcing, and the Indian Ocean dipole–like SST pattern caused by the land–sea configuration forcing. Moreover, the distinctive change of “monsoonality” in the Australian–Indonesian monsoon is predominantly forced by the exposure of the land shelf, which enhances precipitation during early summer (November–December) but weakens it in the rest of the year.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy ( http://www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Cao, jianc@nuist.edu.cn

Abstract

Investigation of global monsoon (GM) responses to external forcings is instrumental for understanding its formation mechanism and projected future changes. Coupled climate model experiments are performed to assess how the individual and full Last Glacial Maximum (LGM) forcings change GM precipitation. Under the full LGM forcing, the annual and local summer-mean GM precipitation are reduced by 8.5% and 10.8%, respectively, compared to the results in the preindustrial control run; and the reduction of Northern Hemisphere (NH) summer monsoon (NHSM) precipitation is twice as large as its Southern Hemisphere (SH) counterpart (SHSM). The NH–SH asymmetric response is mainly caused by the monsoon circulation change–induced moisture convergence rather than the reduction of moisture content, but the root cause is the continental ice sheet forcing. The NHSM precipitation changes dramatically differ among various single-forcing experiments, while this is not the case for their SH counterparts. The moisture budget analysis indicates the NHSM is dynamically oriented, but SHSM is thermodynamically oriented. The markedly different NHSM circulation changes are caused by different forcing-induced sea surface temperature (SST) patterns, including the North Atlantic cooling pattern forced by the continental ice sheet, the mega–La Niña–like pattern resulting from the greenhouse gas forcing, and the Indian Ocean dipole–like SST pattern caused by the land–sea configuration forcing. Moreover, the distinctive change of “monsoonality” in the Australian–Indonesian monsoon is predominantly forced by the exposure of the land shelf, which enhances precipitation during early summer (November–December) but weakens it in the rest of the year.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy ( http://www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Cao, jianc@nuist.edu.cn
Save
  • Argus, D. F., and W. R. Peltier, 2010: Constraining models of postglacial rebound using space geodesy: A detailed assessment of model ICE-5G (VM2) and its relatives. Geophys. J. Int., 181, 697723, https://doi.org/10.1111/J.1365-246X.2010.04562.X.

    • Search Google Scholar
    • Export Citation
  • Bartlein, P. J., and Coauthors, 2011: Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis. Climate Dyn., 37, 775802, https://doi.org/10.1007/s00382-010-0904-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhattacharya, T., J. E. Tierney, and P. DiNezio, 2017: Glacial reduction of the North American monsoon via surface cooling and atmospheric ventilation. Geophys. Res. Lett., 44, 51135122, https://doi.org/10.1002/2017GL073632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., O. Marti, S. Joussaume, and Y. Leclainche, 2000: Ocean feedback in response to 6 kyr before present insolation. J. Climate, 13, 15371553, https://doi.org/10.1175/1520-0442(2000)013<1537:OFIRTK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate Past, 3, 279296, https://doi.org/10.5194/cp-3-279-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brady, E., B. Otto-Bliesner, J. Kay, and N. Rosenbloom, 2013: Sensitivity to glacial forcing in the CCSM4. J. Climate, 26, 19011925, https://doi.org/10.1175/JCLI-D-11-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., B. Wang, B. Xiang, J. Li, T. Wu, X. Fu, L. Wu, and J. Min, 2015: Major modes of short-term climate variability in the newly developed NUIST Earth System Model (NESM). Adv. Atmos. Sci., 32, 585600, https://doi.org/10.1007/s00376-014-4200-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., and Coauthors, 2018: The NUIST Earth System Model version 3: Description and preliminary evaluation. Geosci. Model Dev., 11, 29752993, https://doi.org/10.5194/gmd-11-2975-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., B. Wang, and J. Liu, 2019: Attribution of the Last Glacial Maximum climate formation. Climate Dyn., 53, 16611679, https://doi.org/10.1007/S00382-019-04711-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, H., A. Sinha, X. Wang, F. W. Cruz, and R. L. Edwards, 2012: The global paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dyn., 39, 10451062, https://doi.org/10.1007/s00382-012-1363-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevalier, M., S. Brewer, and B. M. Chase, 2017: Qualitative assessment of PMIP3 rainfall simulations across the eastern African monsoon domains during the Mid-Holocene and the Last Glacial Maximum. Quat. Sci. Rev., 156, 107120, https://doi.org/10.1016/j.quascirev.2016.11.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dyn., 25, 477496, https://doi.org/10.1007/s00382-005-0040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., M. Biasutti, and D. S. Battisti, 2003: Sensitivity of the Atlantic intertropical convergence zone to Last Glacial Maximum boundary conditions. Paleoceanography, 18, 1094, https://doi.org/10.1029/2003PA000916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2006: South American climate during the Last Glacial Maximum: Delayed onset of the South American monsoon. J. Geophys. Res., 111, D02110, https://doi.org/10.1029/2005JD005980.

    • Search Google Scholar
    • Export Citation
  • De Deckker, P., N. Tapper, and W. van der Kaars, 2003: The status of the Indo-Pacific warm pool and adjacent land at the Last Glacial Maximum. Global Planet. Change, 35, 2535, https://doi.org/10.1016/S0921-8181(02)00089-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and J. E. Tierney, 2013: The effect of sea level on glacial Indo-Pacific climate. Nat. Geosci., 6, 485491, https://doi.org/10.1038/NGEO1823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. Clement, G. A. Vecchi, B. Soden, A. J. Broccoli, B. L. Otto-Bliesner, and P. Braconnot, 2011: The response of the Walker circulation to Last Glacial Maximum forcing: Implications for detection in proxies. Paleoceanography, 26, PA3217, https://doi.org/10.1029/2010PA002083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and Coauthors, 2016: The climate response of the Indo-Pacific warm pool to glacial sea level. Paleoceanography, 31, 866894, https://doi.org/10.1002/2015PA002890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., J. E. Tierney, B. L. Otto-Bliesner, A. Timmermann, T. Bhattacharya, N. Rosenbloom, and E. Brady, 2018: Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv., 4, eaat9658, https://doi.org/10.1126/SCIADV.AAT9658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, https://doi.org/10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo, H., and A. Kitoh, 2014: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys. Res. Lett., 41, 17041710, https://doi.org/10.1002/2013GL059158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, J.-J. Luo, H. Murakami, A. Kitoh, and M. Zhao, 2012: Increase of global monsoon area and precipitation under global warming: A robust signal? Geophys. Res. Lett., 39, L06701, https://doi.org/10.1029/2012GL051037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, and D. T. Bolvin, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual version 4.1. LA-CC-06-012, Los Alamos National Laboratory.

  • Jiang, D., and X. Lang, 2010: Last Glacial Maximum East Asian monsoon: Results of PMIP simulations. J. Climate, 23, 50305038, https://doi.org/10.1175/2010JCLI3526.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, D., Z. Tian, X. Lang, M. Kageyama, and G. Ramstein, 2015: The concept of global monsoon applied to the Last Glacial Maximum: A multi-model analysis. Quat. Sci. Rev., 126, 126139, https://doi.org/10.1016/j.quascirev.2015.08.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and Coauthors, 2013: Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL model. Part II: Model–data comparisons. Climate Dyn., 40, 24692495, https://doi.org/10.1007/s00382-012-1499-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamae, Y., X. Li, S. Xie, and H. Ueda, 2017: Atlantic effects on recent decadal trends in global monsoon. Climate Dyn., 49, 34433455, https://doi.org/10.1007/s00382-017-3522-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S., I. Held, D. Friderson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1981: Monsoon climate of the early Holocene: Climate experiment with the Earth’s orbital parameters for 9000 years ago. Science, 214, 5961, https://doi.org/10.1126/science.214.4516.59.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and B. Otto-Bliesner, 1982: The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years BP in a low-resolution general circulation model. J. Atmos. Sci., 39, 11771188, https://doi.org/10.1175/1520-0469(1982)039<1177:TSOTAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambeck, K., A. Purcell, J. Zhao, and N.-O. Svensson, 2010: The Scandinavian Ice Sheet: From MIS 4 to the end of the Last Glacial Maximum. Boreas, 39, 410435, https://doi.org/10.1111/j.1502-3885.2010.00140.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, https://doi.org/10.1007/s00382-012-1564-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, S. C., A. N. LeGrande, M. Kelley, and G. A. Schmidt, 2010: Water vapor source impacts on oxygen isotope variability in tropical precipitation during Heinrich events. Climate Past, 6, 325343, https://doi.org/10.5194/cp-6-325-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., B. Wang, Q. Ding, X. Kuang, W. Soon, and E. Zorita, 2009: Centennial variations of the global monsoon precipitation in the last millennium: Results from ECHO-G model. J. Climate, 22, 23562371, https://doi.org/10.1175/2008JCLI2353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., B. Wang, M. A. Cane, S. Y. Yim, and J. Y. Lee, 2013: Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature, 493, 656659, https://doi.org/10.1038/nature11784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., S. P. Harrison, J. Kutzbach, and B. Otto-Bliesner, 2004: Global monsoons in the mid-Holocene and oceanic feedback. Climate Dyn., 22, 157182, https://doi.org/10.1007/s00382-003-0372-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., and Coauthors, 2012: NEMO ocean engine. Note du Pôle de modelisation No. 27, Institut Pierre-Simon Laplace, 386 pp., https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf.

  • Marzin, C., N. Kallel, M. Kageyama, J.-C. Duplessy, and P. Braconnot, 2013: Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: New data and modelling experiments. Climate Past, 9, 21352151, https://doi.org/10.5194/cp-9-2135-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGee, D., A. Donohoe, J. Marshall, and D. Ferreira, 2014: Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett., 390, 6979, https://doi.org/10.1016/j.epsl.2013.12.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohtadi, M., D. W. Oppo, S. Steinke, J. W. Stuut, R. De Pol-Holz, D. Hebbeln, and A. Lückge, 2011: Glacial to Holocene swings of the Australian-Indonesian monsoon. Nat. Geosci., 4, 540544, https://doi.org/10.1038/ngeo1209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohtadi, M., M. Prange, and S. Steinke, 2016: Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature, 533, 191199, https://doi.org/10.1038/nature17450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohtadi, M., M. Prange, E. Schefuß, and T. C. Jennerjahn, 2017: Late Holocene slowdown of the Indian Ocean Walker circulation. Nat. Commun., 8, 17, https://doi.org/10.1038/s41467-017-00855-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Rep. 349, Max-Planck-Institut für Meteorologie, 127 pp.

  • Schneider von Deimling, T., A. Gonopolski, H. Held, and S. Rahmstorf, 2006: How cold was the Last Glacial Maximum? Geophys. Res. Lett., 33, L14709, https://doi.org/10.1029/2006GL026484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarasov, L., and W. R. Peltier, 2004: A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex. Quat. Sci. Rev., 23, 359388, https://doi.org/10.1016/j.quascirev.2003.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13, 39693993, https://doi.org/10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Ding, 2006: Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett., 33, L06711, https://doi.org/10.1029/2005GL025347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans, 44, 165183, https://doi.org/10.1016/j.dynatmoce.2007.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H. J. Kim, P. J. Webster, and S.-Y. Yim, 2012: Recent change of the global monsoon precipitation (1979–2008). Climate Dyn., 39, 11231135, https://doi.org/10.1007/s00382-011-1266-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H. J. Kim, P. J. Webster, S.-Y. Yim, and B. Xiang, 2013: Northern Hemisphere summer monsoon intensified by mega-El Niño/Southern Oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. USA, 110, 53475352, https://doi.org/10.1073/PNAS.1219405110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., S.-Y. Yim, J.-Y. Lee, J. Liu, and K.-J. Ha, 2014: Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario. Climate Dyn., 42, 83100, https://doi.org/10.1007/s00382-013-1769-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2018: Toward predicting changes in land monsoon rainfall a decade in advance. J. Climate, 31, 26992714, https://doi.org/10.1175/JCLI-D-17-0521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. X., B. Wang, H. Cheng, J. Fasullo, Z. Guo, T. Kiefer, and Z. Liu, 2014: The global monsoon across time scales: Coherent variability of regional monsoons. Climate Past, 10, 20072052, https://doi.org/10.5194/cp-10-2007-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. X., B. Wang, H. Cheng, J. Fasullo, Z. T. Guo, T. Kiefer, and Z. Y. Liu, 2017: The global monsoon across time scales: Mechanisms and outstanding issues. Earth Sci. Rev., 174, 84121, https://doi.org/10.1016/j.earscirev.2017.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., A. S. Auler, R. L. Edwards, H. Cheng, E. Ito, and M. Solheid, 2006: Interhemispheric anti-phasing of rainfall during the last glacial period. Quat. Sci. Rev., 25, 33913403, https://doi.org/10.1016/j.quascirev.2006.02.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, S. L., and E. Tuenter, 2011: The impact of varying ice sheets and greenhouse gases on the intensity and timing of boreal summer monsoons. Quat. Sci. Rev., 30, 469479, https://doi.org/10.1016/j.quascirev.2010.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, M., B. Wang, and J. Liu, 2016: Global monsoon change during the Last Glacial Maximum: A multi-model study. Climate Dyn., 47, 359374, https://doi.org/10.1007/s00382-015-2841-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, M., B. Wang, J. Liu, A. Zhu, and L. Ning, 2018: Understanding the Australian monsoon change during the Last Glacial Maximum with multi-model ensemble. Climate Past, 14, 20372052, https://doi.org/10.5194/cp-14-2037-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Q. Z., A. Berger, and M. Crucifix, 2009: Individual and combined effects of ice sheets and precession on MIS-13 climate. Climate Past, 5, 229243, https://doi.org/10.5194/cp-5-229-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, W. P., and Y. Q. Yu, 2013: Paleoclimate simulations of the mid-Holocene and Last Glacial Maximum by FGOALS. Adv. Atmos. Sci., 30, 684698, https://doi.org/10.1007/s00376-012-2177-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., R. Yu, H. Li, and B. Wang, 2008: Ocean forcing to changes in global monsoon precipitation over the recent half-century. J. Climate, 21, 38333852, https://doi.org/10.1175/2008JCLI2067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 687 285 26
PDF Downloads 481 100 12