Interdecadal Variation in the Synoptic Features of Mei-Yu in the Yangtze River Valley Region and Relationship with the Pacific Decadal Oscillation

Bo Sun Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disasters, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, and Nansen Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Bo Sun in
Current site
Google Scholar
PubMed
Close
,
Huijun Wang Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disasters, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, and Nansen Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Huijun Wang in
Current site
Google Scholar
PubMed
Close
,
Botao Zhou Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disasters, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, and Nansen Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Botao Zhou in
Current site
Google Scholar
PubMed
Close
, and
Hua Li Nansen Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Hua Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study introduces a multivariable covariance index (MVCI) to illustrate the synoptic features of mei-yu in the Yangtze River valley (YRV) region, which contains information of three indicators of mei-yu including precipitation, surface relative humidity, and tropospheric vertical motion. The interdecadal variation in the synoptic features of mei-yu during 1961–2016 is investigated using the MVCI. The date of mei-yu peak and the intensity of mei-yu underwent noticeable interdecadal variations over past decades, which are characterized by a delayed (relatively early) mei-yu peak and a relatively large (small) mei-yu intensity during 1985–97 (1961–80 and 2006–16). The mechanisms of these interdecadal variations are further discussed. The interdecadal variation in the date of mei-yu peak is mainly modulated by the meridional water vapor transport over eastern China during June, which may be partially attributed to an influence of the Pacific decadal oscillation (PDO) on the clockwise gyre over the North Pacific during boreal summer. The interdecadal variation in mei-yu intensity is associated with the interdecadal variation of tropospheric vertical motion over the YRV region during boreal summer, which may be partially attributed to an interaction between the PDO and the large-scale tropical east–west circulation during boreal summer. In addition, the interdecadal variation in the water vapor flux budget and relative humidity over the YRV region also exerted an impact on the interdecadal variation of mei-yu intensity in the YRV region.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Botao Zhou, zhoubt@nuist.edu.cn

Abstract

This study introduces a multivariable covariance index (MVCI) to illustrate the synoptic features of mei-yu in the Yangtze River valley (YRV) region, which contains information of three indicators of mei-yu including precipitation, surface relative humidity, and tropospheric vertical motion. The interdecadal variation in the synoptic features of mei-yu during 1961–2016 is investigated using the MVCI. The date of mei-yu peak and the intensity of mei-yu underwent noticeable interdecadal variations over past decades, which are characterized by a delayed (relatively early) mei-yu peak and a relatively large (small) mei-yu intensity during 1985–97 (1961–80 and 2006–16). The mechanisms of these interdecadal variations are further discussed. The interdecadal variation in the date of mei-yu peak is mainly modulated by the meridional water vapor transport over eastern China during June, which may be partially attributed to an influence of the Pacific decadal oscillation (PDO) on the clockwise gyre over the North Pacific during boreal summer. The interdecadal variation in mei-yu intensity is associated with the interdecadal variation of tropospheric vertical motion over the YRV region during boreal summer, which may be partially attributed to an interaction between the PDO and the large-scale tropical east–west circulation during boreal summer. In addition, the interdecadal variation in the water vapor flux budget and relative humidity over the YRV region also exerted an impact on the interdecadal variation of mei-yu intensity in the YRV region.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Botao Zhou, zhoubt@nuist.edu.cn
Save
  • Chen, H., and J. Sun, 2013: Projected change in East Asian summer monsoon precipitation under RCP scenario. Meteor. Atmos. Phys., 121, 5577, https://doi.org/10.1007/s00703-013-0257-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., J. Sun, and X. Chen, 2014: Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models. Int. J. Climatol., 34, 27302748, https://doi.org/10.1002/joc.3871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., J. Sun, and H. Li, 2017: Future changes in precipitation extremes over China using the NEX-GDDP high-resolution daily downscaled data-set. Atmos. Oceanic Sci. Lett., 10, 403410, https://doi.org/10.1080/16742834.2017.1367625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, X., S. Gao, H. Zhang, and S. Hao, 2009: A diagnostic analysis of the simulated structure of a Meiyu front system in 1999. Acta Meteor. Sin., 23, 4352.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., J. Liu, Y. Sun, Y. Liu, J. He, and Y. Song, 2007: A study of the synoptic-climatology of the Meiyu system in East Asia (in Chinese with English abstract). Chin. J. Atmos. Sci., 31, 10821101.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., Z. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol., 28, 11391161, https://doi.org/10.1002/joc.1615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., and F. Giorgi, 2017: Use of the RegCM system over East Asia: Review and perspectives. Engineering, 3, 766772, https://doi.org/10.1016/J.ENG.2017.05.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., and Coauthors, 2018: Future changes in thermal comfort conditions over China based on multi-RegCM4 simulations. Atmos. Oceanic Sci. Lett., 11, 291299, https://doi.org/10.1080/16742834.2018.1471578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, Q., X. Guo, J. Zheng, and Z. Hao, 2008: Meiyu in the middle and lower reaches of the Yangtze River since 1736. Chin. Sci. Bull., 53, 107114, https://doi.org/10.1007/s11434-007-0440-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and X. Gao, 2018: Regional Earth system modeling: Review and future directions. Atmos. Oceanic Sci. Lett., 11, 189197, https://doi.org/10.1080/16742834.2018.1452520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., and C. H. Ho, 2003: Arctic Oscillation signals in the East Asian summer monsoon. J. Geophys. Res., 108, 4066, https://doi.org/10.1029/2002JD002193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B., V. Krishnamurthy, and H. Annamalai, 1999: A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 611633, https://doi.org/10.1002/qj.49712555412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Zhou, A. Lin, B. Wu, D. Gu, C. Li, and B. Zheng, 2015: Enhanced or weakened western North Pacific subtropical high under global warming? Sci. Rep., 5, 16 771, https://doi.org/10.1038/srep16771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., H. Huang, and C. Zhou, 2018: Widening and weakening of the Hadley circulation under global warming. Sci. Bull., 63, 640644, https://doi.org/10.1016/j.scib.2018.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huaman, L., and C. Schumacher, 2018: Assessing the vertical latent heating structure of the East Pacific ITCZ using the CloudSat CPR and TRMM PR. J. Climate, 31, 25632577, https://doi.org/10.1175/JCLI-D-17-0590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., D. Chen, and J. Ying, 2017: Weakening of the tropical atmospheric circulation response to local sea surface temperature anomalies under global warming. J. Climate, 30, 81498158, https://doi.org/10.1175/JCLI-D-17-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., 1992: The East Asia/Pacific pattern teleconnection of summer circulation and climate anomaly in East Asia. Acta Meteor. Sin., 6, 2537.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., and X. Li, 2015: The interdecadal variation of the western Pacific subtropical high as measured by 500 hPa eddy geopotential height. Atmos. Oceanic Sci. Lett., 8, 371375, https://doi.org/10.3878/AOSL20150038.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., H. Wang, K. Fan, and Y. Gao, 2015: The western Pacific subtropical high after the 1970s: Westward or eastward shift? Climate Dyn., 44, 20352047, https://doi.org/10.1007/s00382-014-2194-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., B.-M. Kim, C.-H. Ho, and Y.-H. Noh, 2008: Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. J. Climate, 21, 788801, https://doi.org/10.1175/2007JCLI1801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedláček, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1971: Tropical east–west circulations during the northern summer. J. Atmos. Sci., 28, 13421347, https://doi.org/10.1175/1520-0469(1971)028<1342:TEWCDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., S. He, K. Fan, and H. Wang, 2019: Relationship between the onset date of the Meiyu and the South Asian anticyclone in April and the related mechanisms. Climate Dyn., 52, 209226, https://doi.org/10.1007/s00382-018-4131-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Y. Zhang, 2014: Effects of different configurations of the East Asian subtropical and polar front jets on precipitation during the mei-yu season. J. Climate, 27, 66606672, https://doi.org/10.1175/JCLI-D-14-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., D. Jiang, Y. Lian, and Y. Yao, 2017: Trends in day-to-day variability of surface air temperature in China during 1961–2012. Atmos. Oceanic Sci. Lett., 10, 122129, https://doi.org/10.1080/16742834.2017.1258291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Deng, S. Yang, and H. Zhang, 2018: Multi-scale temporospatial variability of the East Asian Meiyu-Baiu fronts: Characterization with a suite of new objective indices. Climate Dyn., 51, 16591670, https://doi.org/10.1007/s00382-017-3975-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., B. Dong, and H. Ding, 2006: Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys. Res. Lett., 33, L24701, https://doi.org/10.1029/2006GL027655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., Y. Li, and C. S. Ryu, 2008: Relationship between the zonal displacement of the western Pacific subtropical high and the dominant modes of low-tropospheric circulation in summer. Prog. Nat. Sci., 18, 161165, https://doi.org/10.1016/j.pnsc.2007.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luber, G., and M. McGeehin, 2008: Climate change and extreme heat event. Amer. J. Prev. Med., 35, 429435, https://doi.org/10.1016/j.amepre.2008.08.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Xiao, Y. Diao, A. Dai, C. L. E. Franzke, and I. Simmonds, 2016: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part II: The link to the North Atlantic Oscillation. J. Climate, 29, 39493971, https://doi.org/10.1175/JCLI-D-15-0612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Chen, A. Dai, M. Mu, R. Zhang, and I. Simmonds, 2017: Winter Eurasian cooling linked with the Atlantic Multidecadal Oscillation. Environ. Res. Lett., 12, 125002, https://doi.org/10.1088/1748-9326/aa8de8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 38673893, https://doi.org/10.1175/JCLI-D-11-00346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific Decadal Oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifiled, F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., and Y. Shibagaki, 2007: Multi-scale features of the Meiyu-Baiu front and associated precipitation systems. J. Meteor. Soc. Japan, 85B, 103122, https://doi.org/10.2151/jmsj.85B.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 73390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, X., and Coauthors, 2018: Ensemble evaluation and projection of climate extremes in China using RMIP models. Int. J. Climatol., 38, 20392055, https://doi.org/10.1002/joc.5315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and S. F. Iacobellis, 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18, 48624878, https://doi.org/10.1175/JCLI3558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhome, J. R., D. S. Niyogi, and S. Raman, 2000: Mesoclimatic analysis of severe weather and ENSO interactions in North Carolina. Geophys. Res. Lett., 27, 22692272, https://doi.org/10.1029/1999GL011327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, P. J., 2001: On the definition of a heat wave. J. Appl. Meteor., 40, 762775, https://doi.org/10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S. Xie, 2010: Large-scale dynamics of the Meiyu-Baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134, https://doi.org/10.1175/2009JCLI3128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, C., W. Wang, Z. Hao, and W. Gong, 2007: Exceptional drought events over eastern China during the last five centuries. Climatic Change, 85, 453471, https://doi.org/10.1007/s10584-007-9283-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D., H. Xu, M. Wen, and J. He, 2008: Analysis of the westward extension of western Pacific subtropical high during a heavy rain period over southern China in June 2005. J. Trop. Meteor., 14, 9396.

    • Search Google Scholar
    • Export Citation
  • Si, D., Y. Ding, and Y. Liu, 2009: Decadal northward shift of the Meiyu belt and the possible cause. Chin. Sci. Bull., 54, 47424748, https://doi.org/10.1007/s11434-009-0385-y.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., D. Bi, and B. Yan, 1996: Relationships between summer rainfall over China and ocean temperatures in the tropical western Pacific. J. Meteor. Soc. Japan, 74, 273279, https://doi.org/10.2151/jmsj1965.74.2_273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., D. Bi, and P. Hope, 1999: Atmospheric water vapor flux and its association with rainfall over China in summer. J. Climate, 12, 13531367, https://doi.org/10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y., Y. Liu, and Y. Ding, 2012: A study of surface humidity changes in China during the recent 50 years. Acta Meteor. Sin., 26, 541553, https://doi.org/10.1007/s13351-012-0501-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., 2018: Asymmetric variations in the tropical ascending branches of Hadley circulations and the associated mechanisms and effects. Adv. Atmos. Sci., 35, 317333, https://doi.org/10.1007/s00376-017-7089-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2015: Inter-decadal transition of the leading mode of inter-annual variability of summer rainfall in East China and its associated atmospheric water vapor transport. Climate Dyn., 44, 27032722, https://doi.org/10.1007/s00382-014-2251-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2017: A trend towards a stable warm and windless state of the surface weather conditions in northern and northeastern China during 1961–2014. Adv. Atmos. Sci., 34, 713726, https://doi.org/10.1007/s00376-017-6252-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2018: Interannual variation of the spring and summer precipitation over the Three River Source region in China and the associated regimes. J. Climate, 31, 74417457, https://doi.org/10.1175/JCLI-D-17-0680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2019: Enhanced connections between summer precipitation over the Three-River-Source region China and the global climate system. Climate Dyn., 52, 34713488, https://doi.org/10.1007/s00382-018-4326-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., Y. Zhu, and H. Wang, 2011: The recent interdecadal and interannual variation of water vapor transport over eastern China. Adv. Atmos. Sci., 28, 10391048, https://doi.org/10.1007/s00376-010-0093-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, H., and Coauthors, 2007: Surface flux and atmospheric boundary layer observations from the LAPS project over the middle stream of the Huaihe River basin in China. Hydrol. Processes, 21, 19972008, https://doi.org/10.1002/hyp.6706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S. Xie, C. Deser, Y. Kosaka, and Y. M. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439443, https://doi.org/10.1038/nature11576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, https://doi.org/10.3354/cr00953.

  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., 2001: The weakening of the Asian monsoon circulation after the end of 1970’s. Adv. Atmos. Sci., 18, 376386, https://doi.org/10.1007/BF02919316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. He, X. Liu, and B. Wu, 2009: Interannual variability of the Meiyu onset over Yangtze-Huaihe River valley and analyses of its previous strong influence signal. Chin. Sci. Bull., 54, 687695, https://doi.org/10.1007/s11434-008-0534-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. Paegle, 1996: Impact of analysis uncertainty upon regional atmospheric moisture flux. J. Geophys. Res., 101, 72917303, https://doi.org/10.1029/95JD02896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., and X. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets (in Chinese with English abstract). Chin. J. Geophys., 56, 11021111.

    • Search Google Scholar
    • Export Citation
  • Wu, J., X. Gao, Y. Xu, and J. Pan, 2015: Regional climate change and uncertainty analysis based on four regional climate model simulations over China. Atmos. Oceanic Sci. Lett., 8, 147152, https://doi.org/10.3878/AOSL20150013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z. Wen, S. Yang, and Y. Li, 2010: An interdecadal change in southern China summer rainfall around 1992/93. J. Climate, 23, 23892403, https://doi.org/10.1175/2009JCLI3336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M. Held, M. Zhao, S. A. Klein, and B. J. Soden, 2006: A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity. Climate Dyn., 27, 261279, https://doi.org/10.1007/s00382-006-0138-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, C., and Y. Xu, 2012: The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmos. Oceanic Sci. Lett., 5, 527533, https://doi.org/10.1080/16742834.2012.11447042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, M., H. Xu, and H. Ren, 2018: Influence of Kuroshio SST front in the East China Sea on the climatological evolution of Meiyu rainband. Climate Dyn., 50, 12431266, https://doi.org/10.1007/s00382-017-3681-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., X. Gao, Y. Shen, C. Xu, Y. Shi, and F. Giorgi, 2009: A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci., 26, 763772, https://doi.org/10.1007/s00376-009-9029-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., X. Gao, F. Giorgi, B. Zhou, Y. Shi, J. Wu, and Y. Zhang, 2018: Projected changes in temperature and precipitation extremes over China. Adv. Atmos. Sci., 35, 376388, https://doi.org/10.1007/s00376-017-6269-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, R., Z. Xie, and J. Cao, 2017: A dynamic index for the westward ridge point variability of the western Pacific subtropical high during summer. J. Climate, 30, 33253341, https://doi.org/10.1175/JCLI-D-16-0434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J., and Y. Han, 2005: Estimation of correlation significance levels after moving average. J. Beijing Normal Univ., 41, 139141.

  • Zhou, T., and Coauthors, 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 21992215, https://doi.org/10.1175/2008JCLI2527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., S. Gao, and S. Shen, 2004: A diagnostic study of formation and structure of the Meiyu front system over East Asia. J. Meteor. Soc. Japan, 82, 15651576, https://doi.org/10.2151/jmsj.82.1565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., H. Wang, W. Zhou, and J. Ma, 2011: Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dyn., 36, 14631473, https://doi.org/10.1007/s00382-010-0852-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., H. Wang, J. Ma, T. Wang, and J. Sun, 2015: Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s’ shift in East China summer rainfall. J. Geophys. Res. Atmos., 120, 88178827, https://doi.org/10.1002/2015JD023545.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 903 278 29
PDF Downloads 803 161 28