The Zonal Dipole Pattern of Tropical Cyclone Genesis in the Indian Ocean Influenced by the Tropical Indo-Pacific Ocean Sea Surface Temperature Anomalies

Junpeng Yuan Key Laboratory of Atmospheric Environment and Processes in the Boundary Layer over the Low-Latitude Plateau Region, Department of Atmospheric Sciences, Yunnan University, Kunming, China

Search for other papers by Junpeng Yuan in
Current site
Google Scholar
PubMed
Close
,
Yong Gao Key Laboratory of Atmospheric Environment and Processes in the Boundary Layer over the Low-Latitude Plateau Region, Department of Atmospheric Sciences, Yunnan University, Kunming, and Meteorological Bureau of Tibet Autonomous Region, Lhasa, China

Search for other papers by Yong Gao in
Current site
Google Scholar
PubMed
Close
,
Dian Feng Key Laboratory of Atmospheric Environment and Processes in the Boundary Layer over the Low-Latitude Plateau Region, Department of Atmospheric Sciences, Yunnan University, Kunming, China

Search for other papers by Dian Feng in
Current site
Google Scholar
PubMed
Close
, and
Yali Yang Key Laboratory of Atmospheric Environment and Processes in the Boundary Layer over the Low-Latitude Plateau Region, Department of Atmospheric Sciences, Yunnan University, Kunming, China

Search for other papers by Yali Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

From a basinwide perspective, the dominant mode of Indian Ocean tropical cyclone genesis (TCG) in September–November (SON) shows an equatorially symmetric east–west zonal dipole pattern, which can explain approximately 13% of the SON TCG variance. This zonal dipole TCG pattern is significantly related to the tripole pattern of the sea surface temperature anomalies (SSTAs) in the tropical Indo-Pacific Ocean (IPT). The IPT, which is a combined interbasin mode and presents a dipole pattern of SSTAs in the tropical Indian Ocean and El Niño–like SSTAs in the tropical Pacific Ocean, can influence the local Walker circulation and zonal dipole TCG pattern over the tropical Indian Ocean. Associated with a positive IPT phase, abnormal ascending (descending) motions are induced and favorable for more (less) water vapor transport to the lower–middle level in the western (eastern) tropical Indian Ocean; significant anticyclonic vorticity anomalies are evoked in the lower level over the eastern tropical Indian Ocean, and weak easterly vertical wind shear appears over the tropical Indian Ocean. Thus, abnormally strong upward motion, abundant water vapor in the lower–middle level, and weak vertical wind shear are favorable for more TCG in the western tropical Indian Ocean, while the combined negative contributions of the vertical motion, lower-level vorticity, and humidity terms result in less TCG in the eastern tropical Indian Ocean.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Junpeng Yuan, jpyuan@ynu.edu.cn

Abstract

From a basinwide perspective, the dominant mode of Indian Ocean tropical cyclone genesis (TCG) in September–November (SON) shows an equatorially symmetric east–west zonal dipole pattern, which can explain approximately 13% of the SON TCG variance. This zonal dipole TCG pattern is significantly related to the tripole pattern of the sea surface temperature anomalies (SSTAs) in the tropical Indo-Pacific Ocean (IPT). The IPT, which is a combined interbasin mode and presents a dipole pattern of SSTAs in the tropical Indian Ocean and El Niño–like SSTAs in the tropical Pacific Ocean, can influence the local Walker circulation and zonal dipole TCG pattern over the tropical Indian Ocean. Associated with a positive IPT phase, abnormal ascending (descending) motions are induced and favorable for more (less) water vapor transport to the lower–middle level in the western (eastern) tropical Indian Ocean; significant anticyclonic vorticity anomalies are evoked in the lower level over the eastern tropical Indian Ocean, and weak easterly vertical wind shear appears over the tropical Indian Ocean. Thus, abnormally strong upward motion, abundant water vapor in the lower–middle level, and weak vertical wind shear are favorable for more TCG in the western tropical Indian Ocean, while the combined negative contributions of the vertical motion, lower-level vorticity, and humidity terms result in less TCG in the eastern tropical Indian Ocean.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Junpeng Yuan, jpyuan@ynu.edu.cn
Save
  • Ash, K. D., and C. J. Matyas, 2012: The influences of ENSO and the subtropical Indian Ocean dipole on tropical cyclone trajectories in the southwestern Indian Ocean. Int. J. Climatol., 32, 4156, https://doi.org/10.1002/joc.2249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., L. R. Leung, J. Lu, and G. R. Foltz, 2016: A meridional dipole in premonsoon Bay of Bengal tropical cyclone activity induced by ENSO. J. Geophys. Res., 121, 69546968, https://doi.org/10.1002/2016JD024936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., 2011: Indo-Pacific tripole: An intrinsic mode of tropical climate variability. Adv. Geosci., 24, 118, https://doi.org/10.1142/9789814355353_0001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and M. A. Cane, 2008: El Niño prediction and predictability. J. Comput. Phys., 227, 36253640, https://doi.org/10.1016/j.jcp.2007.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J. H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945–2000. Naval Research Laboratory Tech. Rep. NRL/MR/7540-02-16, https://www.metoc.navy.mil/jtwc/products/best-tracks/tc-bt-report.html.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2, https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.

  • Felton, C. S., B. Subrahmanyam, and V. S. N. Murty, 2013: ENSO-modulated cyclogenesis over the Bay of Bengal. J. Climate, 26, 98069818, https://doi.org/10.1175/JCLI-D-13-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girishkumar, M. S., and M. Ravichandran, 2012: The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October–December. J. Geophys. Res., 117, C02033, https://doi.org/10.1029/2011JC007417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girishkumar, M. S., V. P. T. Prakash, and M. Ravichandran, 2015: Influence of Pacific decadal oscillation on the relationship between ENSO and tropical cyclone activity in the Bay of Bengal during October–December. Climate Dyn., 44, 34693479, https://doi.org/10.1007/s00382-014-2282-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Ha, K.-J., J.-E. Chu, J.-Y. Lee, and K.-S. Yun, 2017: Interbasin coupling between the tropical Indian and Pacific Ocean on interannual timescale: Observation and CMIP5 reproduction. Climate Dyn., 48, 459475, https://doi.org/10.1007/s00382-016-3087-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., J.-H. Kim, J.-H. Jeong, H.-S. Kim, and D. Chen, 2006: Variation of tropical cyclone activity in the South Indian Ocean: El Niño–Southern Oscillation and Madden-Julian Oscillation effects. J. Geophys. Res., 111, D22101, https://doi.org/10.1029/2006JD007289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P. C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, https://doi.org/10.1175/JCLI-D-11-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., K. M. Hu, X. Qu, W. C. Tao, S. L. Yao, G. J. Zhao, and W. P. Jiang, 2016: A review about Indian Ocean basin mode and its impacts on East Asian summer climate. Chin. J. Atmos. Sci., 40, 121130.

    • Search Google Scholar
    • Export Citation
  • Ju, J.-H., L.-L. Chen, and C.-Y. Li, 2004: The preliminary research of Pacific–Indian Ocean sea surface temperature anomaly mode and the definition of its index. J. Trop. Meteor., 6, 617624.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuleshov, Y., L. Qi, R. Fawcett, and D. Jones, 2008: On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophys. Res. Lett., 35, L14S08, https://doi.org/10.1029/2007GL032983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C. Y., L. I. Xin, Y. Hui, P. Jing, and L. I. Gang, 2018: Tropical Pacific–Indian Ocean associated mode and its climatic impacts. Chin. J. Atmos. Sci., 42, 505523.

    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C. P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60, 21192135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., W. Yu, T. Li, V. S. N. Murty, and F. Tangang, 2013: Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle. J. Climate, 26, 10331046, https://doi.org/10.1175/JCLI-D-11-00627.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., W. Yu, K. Li, B. Liu, and G. Wang, 2015: Modulation of interannual variability of tropical cyclone activity over Southeast Indian Ocean by negative IOD phase. Dyn. Atmos. Oceans, 72, 6269, https://doi.org/10.1016/j.dynatmoce.2015.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., T. Li, W. Yu, K. Li, and Y. Liu, 2016: What controls the interannual variation of tropical cyclone genesis frequency over Bay of Bengal in the post-monsoon peak season? Atmos. Sci. Lett., 17, 148154, https://doi.org/10.1002/asl.636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, T., D. Chen, Y. Tang, and B. Jin, 2014: A theoretical investigation of the tropical Indo-Pacific tripole mode. Sci. China Earth Sci., 57, 174188, https://doi.org/10.1007/s11430-013-4762-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2012: Interannual variation of Southern Hemisphere tropical cyclone activity and seasonal forecast of tropical cyclone number in the Australian region. Int. J. Climatol., 32, 190202, https://doi.org/10.1002/joc.2259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. Huang, and G. Chen, 2019: Impacts of the combined modes of the tropical Indo-Pacific sea surface temperature anomalies on the tropical cyclone genesis over the western North Pacific. Int. J. Climatol., 39, 21082119, https://doi.org/10.1002/joc.5938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahala, B. K., B. K. Nayak, and P. K. Mohanty, 2015: Impacts of ENSO and IOD on tropical cyclone activity in the Bay of Bengal. Nat. Hazards, 75, 11051125, https://doi.org/10.1007/s11069-014-1360-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, W., and G. X. Wu, 2000: Gearing between the Indo-monsoon circulation and the Pacific–Walker circulation and the ENSO. Part II: Numerical simulation (in Chinese). Chin. J. Atmos. Sci., 22, 470480.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., P. McIntosh, L. Pigot, and M. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880, https://doi.org/10.1175/JCLI4152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721, https://doi.org/10.1175/2010JCLI3338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ng, E. K., and J. C. Chan, 2012: Interannual variations of tropical cyclone activity over the north Indian Ocean. Int. J. Climatol., 32, 819830, https://doi.org/10.1002/joc.2304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S. P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, O. P., 2008: Indian Ocean dipole mode and tropical cyclone frequency. Curr. Sci., 94, 2931, https://www.jstor.org/stable/24102024.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumesh, K. G., and M. R. Kumar, 2013: Tropical cyclones over north Indian Ocean during El Niño Modoki years. Nat. Hazards, 68, 10571074, https://doi.org/10.1007/s11069-013-0679-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. Y. Moon, 2017: An anomalous genesis potential index for MJO modulation of tropical cyclones. J. Climate, 30, 40214035, https://doi.org/10.1175/JCLI-D-16-0749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, A., A. M. Maharaj, and N. J. Holbrook, 2012: A new method for extracting the ENSO-independent Indian Ocean dipole: Application to Australian region tropical cyclone counts. Climate Dyn., 38, 25032511, https://doi.org/10.1007/s00382-011-1133-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., and W. Meng, 1998: Gearing between the Indo-monsoon circulation and the Pacific–Walker circulation and the ENSO. Part I: Data analyses (in Chinese). Chin. J. Atmos. Sci., 22, 470480.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J. P., and J. Cao, 2013: North Indian Ocean tropical cyclone activities influenced by the Indian Ocean dipole mode. Sci. China Earth Sci., 56, 855865, https://doi.org/10.1007/s11430-012-4559-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., and C. Li, 2008: Decadal variability of the IOD–ENSO relationship. Chin. Sci. Bull., 53, 17451752, https://doi.org/10.1007/s11434-008-0196-6.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 605 202 19
PDF Downloads 600 136 13