Impacts of Summer North Atlantic Sea Surface Temperature Anomalies on the East Asian Winter Monsoon Variability

Zhang Chen Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China

Search for other papers by Zhang Chen in
Current site
Google Scholar
PubMed
Close
,
Renguang Wu School of Earth Sciences, Zhejiang University, Hangzhou, and Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4712-2251
, and
Zhibiao Wang Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhibiao Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study investigates the impacts of the North Atlantic sea surface temperature (SST) anomalies on the East Asian winter monsoon (EAWM) variability. It is found that the northern component of the EAWM variability is associated with a dipole pattern of preceding summer North Atlantic SST anomalies during 1979–2016. The processes linking preceding summer North Atlantic SST to EAWM include the North Atlantic air–sea interactions and atmospheric wave train triggered by the North Atlantic SST anomalies. Atmospheric wind anomalies in the preceding spring–summer result in the formation of a dipole SST anomaly pattern through surface heat flux changes. In turn, the induced SST anomalies provide a feedback on the atmosphere, modifying the location and intensity of anomalous winds over the North Atlantic. The associated surface heat flux anomalies switch the North Atlantic SST anomaly distribution from a dipole pattern in summer to a tripole pattern in the following winter. The North Atlantic tripole SST anomalies excite an atmospheric wave train extending from the North Atlantic through Eurasia to East Asia in winter, resulting in anomalous EAWM. However, the relationship of the northern component of EAWM to preceding summer North Atlantic SST anomalies is weak before the late 1970s. During 1956–76, due to weak air–sea interaction over the North Atlantic, no obvious tripole SST anomaly pattern is established in winter. The atmospheric wave train in winter is located at higher latitudes, leading to a weak connection between the northern component of EAWM and the preceding summer North Atlantic dipole SST anomaly pattern.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renguang Wu, renguang@zju.edu.cn

Abstract

The present study investigates the impacts of the North Atlantic sea surface temperature (SST) anomalies on the East Asian winter monsoon (EAWM) variability. It is found that the northern component of the EAWM variability is associated with a dipole pattern of preceding summer North Atlantic SST anomalies during 1979–2016. The processes linking preceding summer North Atlantic SST to EAWM include the North Atlantic air–sea interactions and atmospheric wave train triggered by the North Atlantic SST anomalies. Atmospheric wind anomalies in the preceding spring–summer result in the formation of a dipole SST anomaly pattern through surface heat flux changes. In turn, the induced SST anomalies provide a feedback on the atmosphere, modifying the location and intensity of anomalous winds over the North Atlantic. The associated surface heat flux anomalies switch the North Atlantic SST anomaly distribution from a dipole pattern in summer to a tripole pattern in the following winter. The North Atlantic tripole SST anomalies excite an atmospheric wave train extending from the North Atlantic through Eurasia to East Asia in winter, resulting in anomalous EAWM. However, the relationship of the northern component of EAWM to preceding summer North Atlantic SST anomalies is weak before the late 1970s. During 1956–76, due to weak air–sea interaction over the North Atlantic, no obvious tripole SST anomaly pattern is established in winter. The atmospheric wave train in winter is located at higher latitudes, leading to a weak connection between the northern component of EAWM and the preceding summer North Atlantic dipole SST anomaly pattern.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renguang Wu, renguang@zju.edu.cn
Save
  • Cassou, C., C. Deser, L. Terray, J. W. Hurrell, and M. D. Villon, 2004: Summer sea surface temperature conditions in the North Atlantic and their impact upon the atmospheric circulation in early winter. J. Climate, 17, 33493363, https://doi.org/10.1175/1520-0442(2004)017<3349:SSSTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., and R. G. Wu, 2017: Interdecadal changes in the relationship between interannual variations of spring north Atlantic SST and Eurasian surface air temperature. J. Climate, 30, 37713787, https://doi.org/10.1175/JCLI-D-16-0477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., R. G. Wu, and W. Chen, 2015: The changing relationship between interannual variations of the North Atlantic Oscillation and northern tropical Atlantic SST. J. Climate, 28, 485504, https://doi.org/10.1175/JCLI-D-14-00422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., R. G. Wu, and Y. Liu, 2016: Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring. J. Climate, 29, 11091125, https://doi.org/10.1175/JCLI-D-15-0524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., H. F. Graf, and R. H. Huang, 2000: The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv. Atmos. Sci., 17, 4860, https://doi.org/10.1007/s00376-000-0042-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., R. G. Wu, and W. Chen, 2014a: Distinguishing interannual variations of the northern and southern modes of the East Asian winter monsoon. J. Climate, 27, 835851, https://doi.org/10.1175/JCLI-D-13-00314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., R. G. Wu, and W. Chen, 2014b: Impacts of autumn Arctic sea ice concentration changes on the East Asian winter monsoon variability. J. Climate, 27, 54335450, https://doi.org/10.1175/JCLI-D-13-00731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z. Z., and B. H. Huang, 2006: Air–sea coupling in the North Atlantic during summer. Climate Dyn., 26, 441457, https://doi.org/10.1007/s00382-005-0094-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, L.-H., W. Chen, L. Wang, and L.-J. Chen, 2009: Interannual variations of winter temperature in China and their relationship with the atmospheric circulation and sea surface temperature (in Chinese). Climatic Environ. Res., 14, 4553.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S. L., 2004: Impact of northwest Atlantic SST anomalies on the circulation over the Ural Mountains during early winter. J. Meteor. Soc. Japan, 82, 971988, https://doi.org/10.2151/jmsj.2004.971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., L. R. Ji, S. Q. Sun, and Y. F. Xin, 2012: Low- and mid-high latitude components of the East Asian winter monsoon and their reflecting variations in winter climate over eastern China. Atmos. Ocean. Sci. Lett., 5, 195200, https://doi.org/10.1080/16742834.2012.11446985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., L. R. Ji, S. Q. Sun, and Y. F. Xin, 2013: A discussion on the East Asian winter monsoon index—Differences between the East Asian winter monsoon at the mid-high latitudes and that at the low latitudes (in Chinese). Chin. J. Atmos. Sci., 37, 755764.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. Y., L. Wang, W. Zhou, and W. Chen, 2014: Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Climate Dyn., 42, 28172839, https://doi.org/10.1007/s00382-014-2163-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanimoto, Y., H. Nakamura, T. Kagimoto, and S. Yamane, 2003: An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. J. Geophys. Res., 108, 3304, https://doi.org/10.1029/2002JC001750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Z. W. Wu, C. P. Chang, J. Liu, J. P. Li, and T. J. Zhou, 2010: Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: The northern and southern temperature modes. J. Climate, 23, 14951512, https://doi.org/10.1175/2009JCLI3243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014: An intensity index for the East Asian winter monsoon. J. Climate, 27, 23612374, https://doi.org/10.1175/JCLI-D-13-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., Y. Y. Liu, Y. Zhang, W. Chen, and S. F. Chen, 2019: Time-varying structure of the wintertime Eurasian pattern: Role of the North Atlantic sea surface temperature and atmospheric mean flow. Climate Dyn., 52, 24672479, https://doi.org/10.1007/s00382-018-4261-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere-ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, https://doi.org/10.1002/qj.49712657017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F. F. Jin, 2003: A moist linear baroclinic model: Coupled dynamical–convective response to El Niño. J. Climate, 16, 11211139, https://doi.org/10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., R. H. Zhang, and R. Arrigo, 2006: Distinct modes of the East Asian winter monsoon. Mon. Wea. Rev., 134, 21652179, https://doi.org/10.1175/MWR3150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J.-J., and Z.-W. Wu, 2019: Inter-decadal change of the spring NAO impact on the summer Pamir–Tienshan snow cover. Int. J. Climatol., 39, 629642, https://doi.org/10.1002/joc.5831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. T. Gao, 2010: Changes in the relationship between northeast China summer temperature and ENSO. J. Geophys. Res., 115, D21107, https://doi.org/10.1029/2010JD014422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. T. Gao, 2011: Northeast China summer temperature and North Atlantic SST. J. Geophys. Res., 116, D16116, https://doi.org/10.1029/2011JD015779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z.-W., and P. Zhang, 2015: Interdecadal variability of the mega-ENSO–NAO synchronization in winter. Climate Dyn., 45, 11171128, https://doi.org/10.1007/s00382-014-2361-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z.-W., B. Wang, J.-P. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, https://doi.org/10.1029/2009JD011733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the East Asia winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 26052619, https://doi.org/10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 770 266 13
PDF Downloads 852 254 12