Evolution of the Asian–African Monsoonal Precipitation over the last 21 kyr and the Associated Dynamic Mechanisms

Jian Shi Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, and Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jian Shi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0703-4612
and
Qing Yan Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China

Search for other papers by Qing Yan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Asian–African monsoonal precipitation (AAMP) has a significant impact on the water availability, biodiversity, and livelihoods of billions of people. A comprehensive understanding of the AAMP behavior over Earth’s history will help to make better future projections. Using a set of transient climate simulations over the last 21 000 years (21 ka), the variation of the AAMP and its responses to various external forcings, including orbital insolation, greenhouse gases (GHGs), and ice sheets, are explored. The precipitation evolutions in the individual monsoon domains have the characteristic of hemispheric synchrony over the last 21 ka. Specifically, the AAMP increased from the Last Glacial Maximum to the early Holocene with several abrupt events and then decreased subsequently. The raised orbital insolation and GHGs lead to an overall AAMP increase, but the enhanced insolation tends to induce a systematic northward shift of the Asian–African monsoon domain. Decreased meltwater discharge could promote the African and Indian monsoonal precipitation through strengthening the Atlantic Ocean meridional overturning circulation. However, the lowering of ice sheets (i.e., orographic effect) results in an anomalous dipole precipitation pattern between North China and India. An analysis of the moisture budget suggests that, although different external forcings may lead to the same sign of precipitation change (e.g., both increased insolation and GHGs can cause the enhanced AAMP), the thermodynamic and dynamic contributions to precipitation could vary greatly by region and forcing. This study provides a reference for the long-term behavior of the AAMP with rising GHGs, higher insolation, and potential melting of the Greenland Ice Sheet.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0074.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qing Yan, yanqing@mail.iap.ac.cn

Abstract

The Asian–African monsoonal precipitation (AAMP) has a significant impact on the water availability, biodiversity, and livelihoods of billions of people. A comprehensive understanding of the AAMP behavior over Earth’s history will help to make better future projections. Using a set of transient climate simulations over the last 21 000 years (21 ka), the variation of the AAMP and its responses to various external forcings, including orbital insolation, greenhouse gases (GHGs), and ice sheets, are explored. The precipitation evolutions in the individual monsoon domains have the characteristic of hemispheric synchrony over the last 21 ka. Specifically, the AAMP increased from the Last Glacial Maximum to the early Holocene with several abrupt events and then decreased subsequently. The raised orbital insolation and GHGs lead to an overall AAMP increase, but the enhanced insolation tends to induce a systematic northward shift of the Asian–African monsoon domain. Decreased meltwater discharge could promote the African and Indian monsoonal precipitation through strengthening the Atlantic Ocean meridional overturning circulation. However, the lowering of ice sheets (i.e., orographic effect) results in an anomalous dipole precipitation pattern between North China and India. An analysis of the moisture budget suggests that, although different external forcings may lead to the same sign of precipitation change (e.g., both increased insolation and GHGs can cause the enhanced AAMP), the thermodynamic and dynamic contributions to precipitation could vary greatly by region and forcing. This study provides a reference for the long-term behavior of the AAMP with rising GHGs, higher insolation, and potential melting of the Greenland Ice Sheet.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0074.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qing Yan, yanqing@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 763.20 KB)
Save
  • An, Z. S., S. C. Porter, J. E. Kutzbach, X. Wu, S. Wang, X. Liu, X. Li, and W. Zhou, 2000: Asynchronous Holocene optimum of the East Asian monsoon. Quat. Sci. Rev., 19, 743762, https://doi.org/10.1016/S0277-3791(99)00031-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anchukaitis, K. J., B. M. Buckley, E. R. Cook, B. I. Cook, R. D. D’Arrigo, and C. M. Ammann, 2010: Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys. Res. Lett., 37, L22703, https://doi.org/10.1029/2010GL044843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armitage, S. J., C. S. Bristow, and N. A. Drake, 2015: West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad. Proc. Natl. Acad. Sci. USA, 112, 85438548, https://doi.org/10.1073/pnas.1417655112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashfaq, M., Y. Shi, W. W. Tung, R. J. Trapp, X. J. Gao, J. S. Pal, and N. S. Diffenbaugh, 2009: Suppression of South Asian summer monsoon precipitation in the 21st century. Geophys. Res. Lett., 36, L01704, https://doi.org/10.1029/2008GL036500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ba, J., and Coauthors, 2014: A multi-model comparison of Atlantic multidecadal variability. Climate Dyn., 43, 23332348, https://doi.org/10.1007/s00382-014-2056-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, A. L., 1978: Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci., 35, 23622367, https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, https://doi.org/10.1126/science.1204994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., A. G. Pendergrass, A. D. Rapp, and K. R. Wodzicki, 2018: Response of the intertropical convergence zone to climate change: Location, width, and strength. Curr. Climate Change Rep., 4, 355370, https://doi.org/10.1007/s40641-018-0110-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, Y. J., and Coauthors, 2015: Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc. Natl. Acad. Sci. USA, 112, 29542959, https://doi.org/10.1073/pnas.1424035112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caley, T., and Coauthors, 2011: Orbital timing of the Indian, East Asian and African boreal monsoons and the concept of a ‘global monsoon.’ Quat. Sci. Rev., 30, 37053715, https://doi.org/10.1016/j.quascirev.2011.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, A. E., D. W. Oppo, R. E. Came, A. N. LeGrande, L. D. Keigwin, and W. B. Curry, 2008: Subtropical Atlantic salinity variability and Atlantic meridional circulation during the last deglaciation. Geology, 36, 991994, https://doi.org/10.1130/G25080A.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F. H., and Coauthors, 2008: Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat. Sci. Rev., 27, 351364, https://doi.org/10.1016/j.quascirev.2007.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T. C., 2003: Maintenance of summer monsoon circulations: A planetary-scale perspective. J. Climate, 16, 20222037, https://doi.org/10.1175/1520-0442(2003)016<2022:MOSMCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. C. Chiang, C. W. Lan, C. H. Chung, Y. C. Liao, and C. J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nat. Geosci., 6, 263267, https://doi.org/10.1038/ngeo1744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, P. U., and Coauthors, 2009: The Last Glacial Maximum. Science, 325, 710714, https://doi.org/10.1126/science.1172873.

  • Dallmeyer, A., and Coauthors, 2015: The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene comparison of different transient climate model simulations. Climate Past, 11, 305326, https://doi.org/10.5194/cp-11-305-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dykoski, C. A., and Coauthors, 2005: A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet. Sci. Lett., 233, 7186, https://doi.org/10.1016/j.epsl.2005.01.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleitmann, D., and Coauthors, 2007: Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat. Sci. Rev., 26, 170188, https://doi.org/10.1016/j.quascirev.2006.04.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasse, F., 2000: Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev., 19, 189211, https://doi.org/10.1016/S0277-3791(99)00061-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasse, F., and E. Van Campo, 1994: Abrupt post-glacial climate events in West Asia and North Africa monsoon domains. Earth Planet. Sci. Lett., 126, 435456, https://doi.org/10.1016/0012-821X(94)90123-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, D., E. C. Hathorne, A. V. Sijinkumar, B. N. Nath, D. Nurnberg, and M. Frank, 2016: South Asian summer monsoon variability during the last similar to 54 kyrs inferred from surface water salinity and river runoff proxies. Quat. Sci. Rev., 138, 615, https://doi.org/10.1016/j.quascirev.2016.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., V. Krishnamurthy, and H. Annamalai, 1999: A broad scale circulation index for the interannual variability of the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 611633, https://doi.org/10.1002/qj.49712555412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govil, P., and P. D. Naidu, 2011: Variations of Indian monsoon precipitation during the last 32 kyr reflected in the surface hydrography of the Western Bay of Bengal. Quat. Sci. Rev., 30, 38713879, https://doi.org/10.1016/j.quascirev.2011.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greve, R., 2000: On the response of the Greenland ice sheet to greenhouse climate change. Climatic Change, 46, 289303, https://doi.org/10.1023/A:1005647226590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, F., 2011: Simulating transient climate evolution of the last deglaciation with CCSM3. Ph.D. thesis, University of Wisconsin–Madison, 171 pp., http://www.cgd.ucar.edu/ccr/TraCE/doc/He_PhD_dissertation_UW_2011.pdf.

  • Huybrechts, P., H. Goelzer, I. Janssens, E. Driesschaert, T. Fichefet, H. Goosse, and M. F. Loutre, 2011: Response of the Greenland and Antarctic Ice Sheets to multi-millennial greenhouse warming in the Earth system model of intermediate complexity LOVECLIM. Surv. Geophys., 32, 397416, https://doi.org/10.1007/s10712-011-9131-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Jiang, D. B., Z. P. Tian, and X. M. Lang, 2015a: Mid-Holocene global monsoon area and precipitation from PMIP simulations. Climate Dyn., 44, 24932512, https://doi.org/10.1007/s00382-014-2175-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, D. B., Z. P. Tian, X. M. Lang, M. Kageyama, and G. Ramstein, 2015b: The concept of global monsoon applied to the last glacial maximum: A multi-model analysis. Quat. Sci. Rev., 126, 126139, https://doi.org/10.1016/j.quascirev.2015.08.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joos, F., and R. Spahni, 2008: Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc. Natl. Acad. Sci. USA, 105, 14251430, https://doi.org/10.1073/pnas.0707386105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudrass, H. R., A. Hofmann, H. Doose, K. Emeis, and H. Erlenkeuser, 2001: Modulation and amplification of climatic changes in the Northern Hemisphere by the Indian summer monsoon during the past 80 ky. Geology, 29, 6366, https://doi.org/10.1130/0091-7613(2001)029<0063:MAAOCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855864, https://doi.org/10.1007/s00382-006-0114-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, https://doi.org/10.1007/s00382-012-1564-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and Coauthors, 2018: Regional-scale precipitation anomalies in northern China during the Holocene and possible impact on prehistoric demographic changes. Geophys. Res. Lett., 45, 12 47712 486, https://doi.org/10.1029/2018GL078873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z. D., and R. Y. Lu, 2005: Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer. Adv. Atmos. Sci., 22, 199211, https://doi.org/10.1007/BF02918509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., and Coauthors, 2009: Transient simulation of last deglaciation with a new mechanism for Bølling–Allerød warming. Science, 325, 310314, https://doi.org/10.1126/science.1171041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., and Coauthors, 2014a: Chinese cave records and the East Asia summer monsoon. Quat. Sci. Rev., 83, 115128, https://doi.org/10.1016/j.quascirev.2013.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., Z. Y. Lu, X. Y. Wen, B. L. Otto-Bliesner, A. Timmermann, and K. M. Cobb, 2014b: Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature, 515, 550553, https://doi.org/10.1038/nature13963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, F. Z., and Coauthors, 2019: Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms. Climate Dyn., 52, 969989, https://doi.org/10.1007/s00382-018-4175-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H. Y., and Coauthors, 2013: Variation of East Asian monsoon precipitation during the past 21 k.y. and potential CO2 forcing. Geology, 41, 10231026, https://doi.org/10.1130/G34488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Man, W. M., T. J. Zhou, and J. H. Jungclaus, 2014: Effects of large volcanic eruptions on global summer climate and East Asian monsoon changes during the last millenium: Analysis of MPI-ESM simulations. J. Climate, 27, 73947409, https://doi.org/10.1175/JCLI-D-13-00739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., D. S. Battisti, K. H. Nisancioglu, and C. M. Bitz, 2011: Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat. Geosci., 4, 474480, https://doi.org/10.1038/ngeo1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 2004: Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111149, https://doi.org/10.1146/annurev.earth.32.082503.144359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinot, S., G. Ramstein, S. P. Harrison, I. C. Prentice, J. Guiot, M. Stute, and S. Joussaume, 1999: Tropical paleoclimates at the Last Glacial Maximum: Comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata. Climate Dyn., 15, 857874, https://doi.org/10.1007/s003820050318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, L., J. H. He, Z. Q. Zhang, and J. N. Song, 2008: Seasonal cycle of the zonal land–sea thermal contrast and East Asian subtropical monsoon circulation. Chin. Sci. Bull., 53, 131136, https://doi.org/10.1007/s11434-007-0518-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramstein, G., M. Kageyama, J. Guiot, H. Wu, C. Hély, G. Krinner, and S. Brewer, 2007: How cold was Europe at the Last Glacial Maximum? A synthesis of the progress achieved since the first PMIP model–data comparison. Climate Past, 3, 331339, https://doi.org/10.5194/cp-3-331-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revel, M., and Coauthors, 2014: 21,000 Years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan. Reg. Environ. Change, 14, 16851696, https://doi.org/10.1007/s10113-014-0588-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shanahan, T. M., and Coauthors, 2015: The time-transgressive termination of the African Humid Period. Nat. Geosci., 8, 140144, https://doi.org/10.1038/ngeo2329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, L. C., Y. J. Cai, H. Cheng, Z. S. An, and R. L. Edwards, 2009: Summer monsoon precipitation variations in central China over the past 750 years derived from a high-resolution absolute-dated stalagmite. Palaeogeogr. Palaeoclimatol. Palaeoecol., 280, 432439, https://doi.org/10.1016/j.palaeo.2009.06.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tierney, J. E., F. S. R. Pausata, and P. deMenocal, 2016: Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling. Nat. Geosci., 9, 4650, https://doi.org/10.1038/ngeo2603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13, 39693993, https://doi.org/10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H. J. Kim, P. J. Webster, and S. Y. Yim, 2012: Recent change of the global monsoon precipitation (1979–2008). Climate Dyn., 39, 11231135, https://doi.org/10.1007/s00382-011-1266-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H. J. Kim, P. J. Webster, S. Y. Yim, and B. Q. Xiang, 2013: Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. USA, 110, 53475352, https://doi.org/10.1073/pnas.1219405110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2018: Toward predicting changes in the land monsoon rainfall a decade in advance. J. Climate, 31, 26992714, https://doi.org/10.1175/JCLI-D-17-0521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, N., D. B. Jiang, and X. M. Lang, 2018: Northern westerlies during the Last Glacial Maximum: Results from CMIP5 simulations. J. Climate, 31, 11351153, https://doi.org/10.1175/JCLI-D-17-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. B., X. Q. Liu, and U. Herzschuh, 2010: Asynchronous evolution of the Indian and East Asian summer monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth-Sci. Rev., 103, 135153, https://doi.org/10.1016/j.earscirev.2010.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. J., H. Cheng, R. L. Edwards, Z. S. An, J. Y. Wu, C.-C. Shen, and J. A. Dorale, 2001: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294, 23452348, https://doi.org/10.1126/science.1064618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. J., and Coauthors, 2008: Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451, 10901093, https://doi.org/10.1038/nature06692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, S. L., and Coauthors, 2007: The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Climate Past, 3, 5164, https://doi.org/10.5194/cp-3-51-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, https://doi.org/10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weldeab, S., D. W. Lea, R. R. Schneider, and N. Andersen, 2007: 155,000 years of West African monsoon and ocean thermal evolution. Science, 316, 13031307, https://doi.org/10.1126/science.1140461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, X. Y., Z. Y. Liu, S. W. Wang, J. Cheng, and J. Zhu, 2016: Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years. Nat. Commun., 7, 11999, https://doi.org/10.1038/NCOMMS11999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, M., B. Wang, and J. Liu, 2016: Global monsoon change during the Last Glacial Maximum: A multi-model study. Climate Dyn., 47, 359374, https://doi.org/10.1007/s00382-015-2841-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., and Z. S. Zhang, 2017: Dominating roles of ice sheets and insolation in variation of tropical cyclone genesis potential over the North Atlantic during the last 21,000 years. Geophys. Res. Lett., 44, 10 62410 632, https://doi.org/10.1002/2017GL075786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., Z. S. Zhang, H. J. Wang, and R. Zhang, 2014: Simulation of Greenland ice sheet during the mid-Pliocene. Chin. Sci. Bull., 59, 201211, https://doi.org/10.1007/s11434-013-0001-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S. L., Z. L. Ding, Y. Y. Li, X. Wang, W. Y. Jiang, and X. F. Huang, 2015: Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proc. Natl. Acad. Sci. USA, 112, 13 17813 183, https://doi.org/10.1073/pnas.1504688112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yim, S.-Y., B. Wang, J. Liu, and Z. Wu, 2014: A comparison of regional monsoon variability using monsoon indices. Climate Dyn., 43, 14231437, https://doi.org/10.1007/s00382-013-1956-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, R. C., B. Wang, and T. J. Zhou, 2004: Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys. Res. Lett., 31, L22212, https://doi.org/10.1029/2004GL021270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D. X., and Coauthors, 2004: Timing, duration, and transitions of the last interglacial Asian monsoon. Science, 304, 575578, https://doi.org/10.1126/science.1091220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. J., and L. Y. Jin, 2016: Association of the Northern Hemisphere circumglobal teleconnection with the Asian summer monsoon during the Holocene in a transient simulation. Holocene, 26, 290301, https://doi.org/10.1177/0959683615608689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., L. X. Zhang, and H. M. Li, 2008: Changes in global land monsoon area and total rainfall accumulation over the last half century. Geophys. Res. Lett., 35, L16707, https://doi.org/10.1029/2008GL034881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., and Coauthors, 2016: Time-transgressive onset of the Holocene Optimum in the East Asian monsoon region. Earth Planet. Sci. Lett., 456, 3946, https://doi.org/10.1016/j.epsl.2016.09.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., Z. Y. Liu, X. Zhang, I. Eisenman, and W. Liu, 2014: Linear weakening of the AMOC in response to receding glacial ice sheets in CCSM3. Geophys. Res. Lett., 41, 62526258, https://doi.org/10.1002/2014GL060891.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3812 244 20
PDF Downloads 2696 211 28