Changes in Temperature Seasonality in China: Human Influences and Internal Variability

Cheng Qian Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Cheng Qian in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6158-9494
and
Xuebin Zhang Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by Xuebin Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Temperature seasonality, the difference between summer and winter temperatures in mid–high latitudes, is an important component of the climate. Whether humans have had detectable influences on changing surface temperature seasonality at scales smaller than the subcontinental scale, where humans are directly impacted, is not clear. In this study, the first detection and attribution analysis of changes in temperature seasonality in China has been carried out. Detection and attribution of both summer and winter temperatures were also conducted, with careful consideration of observational uncertainty and the inconsistency between observation and model simulations induced by the long coastline and country border in China. The results show that the response to external forcings is robustly detectable in the spatiotemporal pattern of weakening seasonality and in that of warming winter temperature, although models may have underestimated the observed changes. The response to external forcings is detectable and consistent with the observed change in summer temperature averaged over China. Human influences are detectable in changes in seasonality and summer and winter temperatures, most robustly in winter, and these influences can be separated from those of natural forcing when averaged over China. The recent increase in summer temperature was found to be due to external forcings, and the warming hiatus in winter temperature from 1998 to 2013 was due to a statistically significant cooling trend induced by internal variability. These results will give insights into the understanding of the warming hiatus in China, as well as the hot summers and cold winters in recent years.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cheng Qian, qianch@tea.ac.cn

Abstract

Temperature seasonality, the difference between summer and winter temperatures in mid–high latitudes, is an important component of the climate. Whether humans have had detectable influences on changing surface temperature seasonality at scales smaller than the subcontinental scale, where humans are directly impacted, is not clear. In this study, the first detection and attribution analysis of changes in temperature seasonality in China has been carried out. Detection and attribution of both summer and winter temperatures were also conducted, with careful consideration of observational uncertainty and the inconsistency between observation and model simulations induced by the long coastline and country border in China. The results show that the response to external forcings is robustly detectable in the spatiotemporal pattern of weakening seasonality and in that of warming winter temperature, although models may have underestimated the observed changes. The response to external forcings is detectable and consistent with the observed change in summer temperature averaged over China. Human influences are detectable in changes in seasonality and summer and winter temperatures, most robustly in winter, and these influences can be separated from those of natural forcing when averaged over China. The recent increase in summer temperature was found to be due to external forcings, and the warming hiatus in winter temperature from 1998 to 2013 was due to a statistically significant cooling trend induced by internal variability. These results will give insights into the understanding of the warming hiatus in China, as well as the hot summers and cold winters in recent years.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cheng Qian, qianch@tea.ac.cn
Save
  • Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Climate Dyn., 21, 477491, https://doi.org/10.1007/s00382-003-0313-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreasson, F. P., and B. Schmitz, 2000: Temperature seasonality in the early middle Eocene North Atlantic region: Evidence from stable isotope profiles of marine gastropod shells. Geol. Soc. Amer. Bull., 112, 628640, https://doi.org/10.1130/0016-7606(2000)112<628:TSITEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Braganza, K., D. J. Karoly, A. C. Hirst, P. Stott, R. J. Stouffer, and S. F. B. Tett, 2003: Simple indices of global climate variability and change. Part I: Variability and correlation structure. Climate Dyn., 20, 491502, https://doi.org/10.1007/s00382-002-0286-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. Zhai, 2017: Persisting and strong warming hiatus over eastern China during the past two decades. Environ. Res. Lett., 12, 104010, https://doi.org/10.1088/1748-9326/aa822b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. L., J. C. Furtado, M. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Asymmetric seasonal temperature trends. Geophys. Res. Lett., 39, L04705, https://doi.org/10.1029/2011GL050582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornes, R., P. Jones, and C. Qian, 2017: Twentieth-century trends in the annual cycle of temperature across the Northern Hemisphere. J. Climate, 30, 57555773, https://doi.org/10.1175/JCLI-D-16-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drost, F., and D. Karoly, 2012: Evaluating global climate responses to different forcings using simple indices. Geophys. Res. Lett., 39, L16701, https://doi.org/10.1029/2012GL052667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and Z. Xiao, 2015: Does the climate warming hiatus exist over the Tibetan Plateau? Sci. Rep., 5, 13 711, https://doi.org/10.1038/srep13711.

  • Duan, J., and Coauthors, 2017: Weakening of annual temperature cycle over the Tibetan Plateau since the 1870s. Nat. Commun., 8, 14 008, https://doi.org/10.1038/ncomms14008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dwyer, J. G., M. Biasutti, and A. H. Sobel, 2012: Projected changes in the seasonal cycle of surface temperature. J. Climate, 25, 63596374, https://doi.org/10.1175/JCLI-D-11-00741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al, Eds., Cambridge University Press, Cambridge, 741–866.

  • Folland, C. K., O. Boucher, A. Colman, and D. E. Parker, 2018: Causes of irregularities in trends of global mean surface temperature since the late 19th century. Sci. Adv., 4, eaao5297, https://doi.org/10.1126/sciadv.aao5297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., M. H. England, M. E. Mann, and B. A. Steinman, 2015: Separating internal variability from the externally forced climate response. J. Climate, 28, 81848202, https://doi.org/10.1175/JCLI-D-15-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N., and J. Fyfe, 2013: Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett., 40, 11891193, https://doi.org/10.1002/grl.50249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imada, Y., S. Maeda, M. Watanabe, H. Shiogama, R. Mizuta, M. Ishii, and M. Kimoto, 2017: Recent enhanced seasonal temperature contrast in Japan from large ensemble high-resolution climate simulations. Atmosphere, 8, 57, https://doi.org/10.3390/atmos8030057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and M. Hulme, 1996: Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol., 16, 361377, https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<361::AID-JOC53>3.0.CO;2-F.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., K. R. Briffa, and T. J. Osborn, 2003: Changes in the Northern Hemisphere annual cycle: Implications for paleoclimatology? J. Geophys. Res., 108, 4588, https://doi.org/10.1029/2003JD003695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012a: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, https://doi.org/10.1029/2011JD017139.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012b: The CRUTEM4 dataset, version 4.2.0.0. Met Office Hadley Centre, accessed 2 September 2018, http://www.cru.uea.ac.uk/cru/data/temperature/#datdow.

  • Li, C., B. Stevens, and J. Marotzke, 2015a: Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys. Res. Lett., 42, 81318139, https://doi.org/10.1002/2015GL065327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., S. Yang, W. Xu, X. L. Wang, P. Jones, D. Parker, L. Zhou, Y. Feng, and Y. Gao, 2015b: China experiencing the recent warming hiatus. Geophys. Res. Lett., 42, 889898, https://doi.org/10.1002/2014GL062773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., L. Cao, Y. Zhu, and Z. Yan, 2016: Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960–2013. J. Meteor. Res., 30, 5366, https://doi.org/10.1007/s13351-016-5054-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. Park, 1996: Greenhouse warming and changes in the seasonal cycle of temperature: Model versus observations. Geophys. Res. Lett., 23, 11111114, https://doi.org/10.1029/96GL01066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, https://doi.org/10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., Y. Kosaka, M. Watanabe, H. Nakamura, and M. Kimoto, 2019: A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nat. Climate Change, https://doi.org/10.1038/s41558-018-0379-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Qian, C., and X. Zhang, 2015: Human influences on changes in the temperature seasonality in mid- to high-latitude land areas. J. Climate, 28, 59085921, https://doi.org/10.1175/JCLI-D-14-00821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, C., C. Fu, and Z. Wu, 2011: Changes in the amplitude of the temperature annual cycle in China and their implication for climate change research. J. Climate, 24, 52925302, https://doi.org/10.1175/JCLI-D-11-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, C., X. Zhang, and Z. Li, 2019: Linear trends in temperature extremes in China, with an emphasis on non-Gaussian and serially dependent characteristics. Climate Dyn., 53, 533550, https://doi.org/10.1007/s00382-018-4600-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribes, A., J.-M. Azaïs, and S. Planton, 2009: Adaptation of the optimal fingerprint method for climate change detection using a well-conditioned covariance matrix estimate. Climate Dyn., 33, 707722, https://doi.org/10.1007/s00382-009-0561-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribes, A., S. Planton, and L. Terray, 2013: Application of regularized optimal fingerprinting to attribution. Part I: Method, properties and idealised analysis. Climate Dyn., 41, 28172836, https://doi.org/10.1007/s00382-013-1735-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., D. T. Shindell, and K. Tsigaridis, 2014: Reconciling warming trends. Nat. Geosci., 7, 158160, https://doi.org/10.1038/ngeo2105.

  • Stine, A. R., and P. Huybers, 2012: Changes in the seasonal cycle of temperature and atmospheric circulation. J. Climate, 25, 73627380, https://doi.org/10.1175/JCLI-D-11-00470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stine, A. R., P. Huybers, and I. Y. Fung, 2009: Changes in the phase of the annual cycle of surface temperature. Nature, 457, 435440, https://doi.org/10.1038/nature07675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, G. Ren, F. W. Zwiers, and T. Hu, 2016: Contribution of urbanization to warming in China. Nat. Climate Change, 6, 706709, https://doi.org/10.1038/nclimate2956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szentimrey, T., 1999: Multiple Analysis of Series for Homogenization (MASH). Proc. Second Seminar for Homogenization of Surface Climatological Data, Budapest, Hungary, World Climate Data and Monitoring Programme 41, WMO/TD 962, 2746.

  • Thomson, D. J., 1995: The seasons, global temperature, and precession. Science, 268, 5968, https://doi.org/10.1126/science.268.5207.59.

  • Wallace, C. J., and T. J. Osborn, 2002: Recent and future modulation of the annual cycle. Climate Res., 22, 111, https://doi.org/10.3354/cr022001.

  • Wang, X. L., and V. R. Swail, 2001: Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J. Climate, 14, 22042221, https://doi.org/10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., and Coauthors, 2005: From dimming to brightening: Decadal changes in solar radiation at earth’s surface. Science, 308, 847850, https://doi.org/10.1126/science.1103215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Y., J. Huang, and Y. Liu, 2017: From accelerated warming to warming hiatus in China. Int. J. Climatol., 37, 17581773, https://doi.org/10.1002/joc.4809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., X. J. Gao, Y. Shi, and B. T. Zhou, 2015: Detection and attribution analysis of annual mean temperature change in China. Climate Res., 63, 6171, https://doi.org/10.3354/cr01283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yettella, V., and M. R. England, 2018: The role of internal variability in twenty-first-century projections of the seasonal cycle of Northern Hemisphere surface temperature. J. Geophys. Res. Atmos., 123, 13 14913 167, https://doi.org/10.1029/2018JD029066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yiou, P., R. Vautard, P. Naveau, and C. Cassou, 2007: Inconsistency between atmospheric dynamics and temperatures during the exceptional 2006/2007 fall/winter and recent warming in Europe. Geophys. Res. Lett., 34, L21808, https://doi.org/10.1029/2007GL031981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. A. Vincent, W. D. Hogg, and A. Niitsoo, 2000: Temperature and precipitation trends in Canada during the 20th century. Atmos.–Ocean, 38, 395429, https://doi.org/10.1080/07055900.2000.9649654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, and P. A. Stott, 2006: Multimodel multisignal climate change detection at regional scale. J. Climate, 19, 42944307, https://doi.org/10.1175/JCLI3851.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T. B., C. X. Li, and Z. Y. Zuo, 2016: Contributions of anthropogenic and external natural forcings to climate changes over China based on CMIP5 model simulations. Sci. China Earth Sci., 59, 503517, https://doi.org/10.1007/s11430-015-5207-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 689 201 21
PDF Downloads 632 186 19